Explicit computation of Gross-Stark units over real quadratic base fields

Paul Thomas Young

College of Charleston

December 19, 2012
Acknowledgments

This talk represents joint work with Brett Tangedal, UNCG.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:
Acknowledgments

This talk represents joint work with Brett Tangedal, UNCG.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:

- College of Charleston Mathematics Department
This talk represents joint work with Brett Tangedal, UNCG.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:

- College of Charleston Mathematics Department
- Department of Mathematics and Statistics, University of North Carolina, Greensboro
 and especially
Acknowledgments

This talk represents joint work with Brett Tangedal, UNCG.

This work is dedicated to the memory of our mentor David R. Hayes.

Thanks to:

- College of Charleston Mathematics Department
- Department of Mathematics and Statistics, University of North Carolina, Greensboro
 and especially
- Brett, Ann, and Elise Tangedal
Hilbert’s Twelfth Problem

D. Hilbert, Paris 1900: Given a finite extension field F of \mathbb{Q}, give an analytic construction of all abelian extensions K of F, using only information from F.

Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n. That is, every abelian extension K of \mathbb{Q} may be obtained from \mathbb{Q} by adjoining values of the analytic function $f(z) = e^{2\pi iz}$ for $z \in \mathbb{Q}$.

Takagi (1920): If $F = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, then every abelian extension K of F may be obtained by adjoining to F values of $f(z) = e^{2\pi iz}$; the elliptic modular function $j(\tau)$; and/or the Weierstrass \wp function $\wp(z, \tau)$ for $z \in \mathbb{Q}, \tau \in F$.

T, Y (2012): If K is a totally complex abelian extension of a real quadratic field $F = \mathbb{Q}(\sqrt{d})$, then K is generated by p-adic exponentials of values of our p-adic double log gamma function $G_p, 2(z; (\omega_1, \omega_2))$ for $z, \omega_i \in F$.

Using these p-adic functions, we give an effective, efficient algorithm that explicitly constructs K from F analytically (p-adic analytically).
Hilbert’s Twelfth Problem

D. Hilbert, Paris 1900: Given a finite extension field F of \mathbb{Q}, give an analytic construction of all abelian extensions K of F, using only information from F.

- Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.

Hilbert’s Twelfth Problem

D. Hilbert, Paris 1900: Given a finite extension field F of \mathbb{Q}, give an analytic construction of all abelian extensions K of F, using only information from F.

- Kronecker, Weber (1877, 1886, 1896, 1908): Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.

- That is, every abelian extension K of \mathbb{Q} may be obtained from \mathbb{Q} by adjoining values of the analytic function $f(z) = e^{2\pi iz}$ for $z \in \mathbb{Q}$.

Takagi (1920): If $F = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, then every abelian extension K of F may be obtained by adjoining to F values of $f(z) = e^{2\pi iz}$; the elliptic modular function $j(\tau)$; and/or the Weierstrass \wp function $\wp(z, \tau)$ for $z \in \mathbb{Q}$, $\tau \in F$.

T,Y (2012): If K is a totally complex abelian extension of a real quadratic field $F = \mathbb{Q}(\sqrt{d})$, then K is generated by p-adic exponentials of values of our p-adic double log gamma function $G_p, 2(z; (\omega_1, \omega_2))$ for $z, \omega_i \in F$.

Using these p-adic functions, we give an effective, efficient algorithm that explicitly constructs K from F analytically (p-adic analytically).
Hilbert’s Twelfth Problem

D. Hilbert, Paris 1900: Given a finite extension field F of \mathbb{Q}, give an analytic construction of all abelian extensions K of F, using only information from F.

- **Kronecker, Weber (1877, 1886, 1896, 1908):** Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.

- That is, every abelian extension K of \mathbb{Q} may be obtained from \mathbb{Q} by adjoining values of the analytic function $f(z) = e^{2\pi iz}$ for $z \in \mathbb{Q}$.

- **Takagi (1920):** If $F = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, then every abelian extension K of F may be obtained by adjoining to F values of $f(z) = e^{2\pi iz}$; the elliptic modular function $j(\tau)$; and/or the Weierstrass \wp function $\wp(z, \tau)$ for $z \in \mathbb{Q}$, $\tau \in F$.

T,Y (2012) If K is a totally complex abelian extension of a real quadratic field $F = \mathbb{Q}(\sqrt{d})$, then K is generated by p-adic exponentials of values of our p-adic double log gamma function $G_p, 2(z; (\omega_1, \omega_2))$ for $z, \omega_i \in F$.

Using these p-adic functions, we give an effective, efficient algorithm that explicitly constructs K from F analytically (p-adic analytically).
Hilbert’s Twelfth Problem

D. Hilbert, Paris 1900: Given a finite extension field F of \mathbb{Q}, give an analytic construction of all abelian extensions K of F, using only information from F.

- **Kronecker, Weber (1877, 1886, 1896, 1908):** Every abelian extension K of $F = \mathbb{Q}$ is contained in a cyclotomic field $\mathbb{Q}(e^{2\pi i/n})$ for some positive integer n.

- That is, every abelian extension K of \mathbb{Q} may be obtained from \mathbb{Q} by adjoining values of the analytic function $f(z) = e^{2\pi iz}$ for $z \in \mathbb{Q}$.

- **Takagi (1920):** If $F = \mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field, then every abelian extension K of F may be obtained by adjoining to F values of $f(z) = e^{2\pi iz}$; the elliptic modular function $j(\tau)$; and/or the Weierstrass \wp function $\wp(z, \tau)$ for $z \in \mathbb{Q}$, $\tau \in F$.

- **T,Y (2012)** If K is a totally complex abelian extension of a real quadratic field $F = \mathbb{Q}(\sqrt{d})$, then K is generated by p-adic exponentials of values of our p-adic double log gamma function $G_{p,2}(z; (\omega_1, \omega_2))$ for $z, \omega_i \in F$.
Hilbert’s Twelfth Problem

D. Hilbert, Paris 1900: Given a finite extension field \(F \) of \(\mathbb{Q} \), give an analytic construction of all abelian extensions \(K \) of \(F \), using only information from \(F \).

- **Kronecker, Weber (1877, 1886, 1896, 1908):** Every abelian extension \(K \) of \(F = \mathbb{Q} \) is contained in a cyclotomic field \(\mathbb{Q}(e^{2\pi i/n}) \) for some positive integer \(n \).

- That is, every abelian extension \(K \) of \(\mathbb{Q} \) may be obtained from \(\mathbb{Q} \) by adjoining values of the analytic function \(f(z) = e^{2\pi iz} \) for \(z \in \mathbb{Q} \).

- **Takagi (1920):** If \(F = \mathbb{Q}(\sqrt{-d}) \) is an imaginary quadratic field, then every abelian extension \(K \) of \(F \) may be obtained by adjoining to \(F \) values of \(f(z) = e^{2\pi iz} \); the elliptic modular function \(j(\tau) \); and/or the Weierstrass \(\wp \) function \(\wp(z, \tau) \) for \(z \in \mathbb{Q}, \tau \in F \).

- **T,Y (2012)** If \(K \) is a totally complex abelian extension of a real quadratic field \(F = \mathbb{Q}(\sqrt{d}) \), then \(K \) is generated by \(p \)-adic exponentials of values of our \(p \)-adic double log gamma function \(G_{p,2}(z; (\omega_1, \omega_2)) \) for \(z, \omega_i \in F \).

- Using these \(p \)-adic functions, we give an effective, efficient algorithm that explicitly constructs \(K \) from \(F \) analytically (\(p \)-adic analytically).
A number field K is a finite (algebraic) extension field of \mathbb{Q}, of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

- The **Galois group** $G = \text{Gal}(K/\mathbb{Q})$ of field automorphisms of K.
- If $|G| = [K : \mathbb{Q}]$ then K is a **Galois extension** of \mathbb{Q}, and if G is also abelian then K is an **abelian extension** of \mathbb{Q}.

- The **ring of algebraic integers** $O_K = \{ \alpha \in K : \exists$ monic $f \in \mathbb{Z}[x], f(\alpha) = 0 \}$.
- The **multiplicative group** O_K^\times of units of O_K.

- Every ideal A of O_K has a unique factorization as a product of prime ideals.

- Every nonzero ideal A of O_K has finite index in O_K, called the **norm** of A, $N_A = |O_K/A|$.

- The **Dedekind zeta function** of K, for $\Re(s) > 1$:
 \[
 \zeta_K(s) = \sum_{\text{ideals } A} N_A^{-s} = \prod_{\text{prime ideals } P} (1 - N_P^{-s})^{-1}.
 \]
A number field K is a finite (algebraic) extension field of \mathbb{Q}, of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

- **Galois group** $G = \text{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q}, and if G is also abelian then K is an *abelian extension* of \mathbb{Q}.
A number field K is a finite (algebraic) extension field of \mathbb{Q}, of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

- Galois group $G = \text{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a Galois extension of \mathbb{Q}, and if G is also abelian then K is an abelian extension of \mathbb{Q}.
- Ring $\mathcal{O}_K = \{\alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], f(\alpha) = 0\}$ of algebraic integers of K.

Multiplicative group \mathcal{O}_K^\times of units of \mathcal{O}_K.

Every ideal A of \mathcal{O}_K has a unique factorization as a product of prime ideals.

Every nonzero ideal A of \mathcal{O}_K has finite index in \mathcal{O}_K, called the norm of A, $N_A = |\mathcal{O}_K/A|$.

Dedekind zeta function of K, for $\Re(s) > 1$: $\zeta_K(s) = \sum_{\text{ideals } A} N_A^{-s} = \prod_{\text{prime ideals } P} (1 - N_P^{-s})^{-1}$.

Paul Thomas Young (College of Charleston)
A number field K is a finite (algebraic) extension field of \mathbb{Q}, of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

- **Galois group** $G = \text{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a *Galois extension* of \mathbb{Q}, and if G is also abelian then K is an *abelian extension* of \mathbb{Q}.

- **Ring** $\mathcal{O}_K = \{ \alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], f(\alpha) = 0 \}$ of *algebraic integers* of K.

- **Multiplicative group** \mathcal{O}_K^\times of units of \mathcal{O}_K.

Dedekind zeta function of K, for $\Re(s) > 1$:

$$
\zeta_K(s) = \sum_{\text{ideals } A} N_A^{-s} = \prod_{\text{prime ideals } P} (1 - N_P^{-s})^{-1}.
$$
A **number field** K is a finite (algebraic) extension field of \mathbb{Q}, of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

- **Galois group** $G = \text{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a **Galois extension** of \mathbb{Q}, and if G is also abelian then K is an **abelian extension** of \mathbb{Q}.
- **Ring** $\mathcal{O}_K = \{ \alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], f(\alpha) = 0 \}$ of **algebraic integers** of K.
- **Multiplicative group** \mathcal{O}_K^\times of units of \mathcal{O}_K.
- Every ideal \mathcal{A} of \mathcal{O}_K has a unique factorization as a product of prime ideals.
A number field K is a finite (algebraic) extension field of \mathbb{Q}, of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

- Galois group $G = \text{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a Galois extension of \mathbb{Q}, and if G is also abelian then K is an abelian extension of \mathbb{Q}.
- Ring $\mathcal{O}_K = \{\alpha \in K : \exists$ monic $f \in \mathbb{Z}[x], f(\alpha) = 0\}$ of algebraic integers of K.
- Multiplicative group \mathcal{O}_K^\times of units of \mathcal{O}_K.
- Every ideal \mathcal{A} of \mathcal{O}_K has a unique factorization as a product of prime ideals.
- Every nonzero ideal \mathcal{A} of \mathcal{O}_K has finite index in \mathcal{O}_K, called the norm of \mathcal{A}, $N\mathcal{A} = |\mathcal{O}_K/\mathcal{A}|$.

Dedekind zeta function of K, for $\Re(s) > 1$:

$$\zeta_K(s) = \sum_{\text{ideals } \mathcal{A}} N\mathcal{A}^{-s} = \prod_{\text{prime ideals } \mathcal{P}} (1 - N\mathcal{P}^{-s})^{-1}.$$
A number field K is a finite (algebraic) extension field of \mathbb{Q}, of dimension $n = [K : \mathbb{Q}]$. Associated to it we have:

- Galois group $G = \text{Gal}(K/\mathbb{Q})$ of field automorphisms of K. If $|G| = [K : \mathbb{Q}]$ then K is a Galois extension of \mathbb{Q}, and if G is also abelian then K is an abelian extension of \mathbb{Q}.
- Ring $\mathcal{O}_K = \{\alpha \in K : \exists \text{ monic } f \in \mathbb{Z}[x], f(\alpha) = 0\}$ of algebraic integers of K.
- Multiplicative group \mathcal{O}_K^\times of units of \mathcal{O}_K.
- Every ideal \mathcal{A} of \mathcal{O}_K has a unique factorization as a product of prime ideals.
- Every nonzero ideal \mathcal{A} of \mathcal{O}_K has finite index in \mathcal{O}_K, called the norm of \mathcal{A}, $N\mathcal{A} = |\mathcal{O}_K/\mathcal{A}|$.

Dedekind zeta function of K, for $\Re(s) > 1$:

$$\zeta_K(s) = \sum_{\text{ideals } \mathcal{A}} N\mathcal{A}^{-s} = \prod_{\text{prime ideals } \mathcal{P}} (1 - NP^{-s})^{-1}.$$
Analytic class number formula

The Dedekind zeta function ζ_K of K has an analytic continuation to \mathbb{C} except for a simple pole at $s = 1$, with residue

$$\lim_{s \to 1} (s - 1)\zeta_K(s) = \frac{2^{r_1}(2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where

r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K; h_K is the class number, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$; the regulator R_K of K is a certain determinant formed from the $r_1 + r_2 - 1$ generators of the torsion-free part of unit group \mathcal{O}_K^\times, which measures how "dense" the units are in \mathcal{O}_K; w_K is the number of roots of unity in K; d_K is the discriminant of K.

Paul Thomas Young (College of Charleston)
Explicit computation of Gross-Stark units over real quadratic base fields
December 19, 2012 5 / 20
Analytic class number formula

The Dedekind zeta function ζ_K of K has an analytic continuation to \mathbb{C} except for a simple pole at $s = 1$, with residue

$$\lim_{s \to 1} (s - 1)\zeta_K(s) = \frac{2^{r_1}(2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where

- r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K;
The Dedekind zeta function ζ_K of K has an analytic continuation to \mathbb{C} except for a simple pole at $s = 1$, with residue

$$\lim_{s \to 1} (s - 1) \zeta_K(s) = \frac{2^{r_1}(2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where

- r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K;

- h_K is the class number, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$;
The Dedekind zeta function ζ_K of K has an analytic continuation to \mathbb{C} except for a simple pole at $s = 1$, with residue

$$\lim_{s \to 1} (s - 1)\zeta_K(s) = \frac{2^{r_1}(2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where

- r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K;
- h_K is the *class number*, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$;
- The *regulator* R_K of K is a certain determinant formed from the $r_1 + r_2 - 1$ generators of the torsion-free part of unit group \mathcal{O}_K^\times, which measures how “dense” the units are in \mathcal{O}_K;
The Dedekind zeta function ζ_K of K has an analytic continuation to \mathbb{C} except for a simple pole at $s = 1$, with residue

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}(2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where

- r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K;
- h_K is the *class number*, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$;
- The *regulator* R_K of K is a certain determinant formed from the $r_1 + r_2 - 1$ generators of the torsion-free part of unit group \mathcal{O}_K^\times, which measures how “dense” the units are in \mathcal{O}_K;
- w_K is the number of roots of unity in K.

The Dedekind zeta function ζ_K of K has an analytic continuation to \mathbb{C} except for a simple pole at $s = 1$, with residue

$$\lim_{s \to 1} (s - 1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K R_K}{w_K \sqrt{|d_K|}},$$

where

- r_1 is the number of real embeddings of K, and r_2 is the number of pairs of complex embeddings of K;

- h_K is the class number, which measures how far \mathcal{O}_K is from having unique factorization; \mathcal{O}_K is a UFD $\iff h_K = 1$;

- The regulator R_K of K is a certain determinant formed from the $r_1 + r_2 - 1$ generators of the torsion-free part of unit group \mathcal{O}_K^\times, which measures how “dense” the units are in \mathcal{O}_K;

- w_K is the number of roots of unity in K;

- d_K is the discriminant of K.
Partial zeta functions

Suppose K is a totally complex abelian extension of a real quadratic field F, with $G = \text{Gal}(K/F)$. Choose a prime (p) of \mathbb{Z} which splits as $(p) = p\overline{p}$ in F, and such that p splits completely in K. Let the set T consist of p together with all infinite primes of \mathcal{O}_F and all finite primes of \mathcal{O}_F which ramify in K, and $S = T \cup \{p\}$.

Associated to every $\sigma \in G$ there is a partial zeta function $\zeta_S(s; \sigma)$ defined by

$$\zeta_S(s; \sigma) = \sum_{\sigma \mathcal{A} = \sigma} \mathcal{N}\mathcal{A}^{-s}, \quad (\Re(s) > 1),$$

where the sum is over all ideals \mathcal{A} of \mathcal{O}_K relatively prime to all ideals in the set S and having the specified automorphism $\sigma \mathcal{A} = \sigma$ as its image in G under the Artin map. It has an analytic continuation to all of \mathbb{C} except a simple pole at $s = 1$.

Cassou-Nogues (1979):

There also exists a p-adic partial zeta function $\zeta_S, p(s, \sigma)$ for each $\sigma \in G$ such that $\zeta_S, p(-k; \sigma) = \zeta_S(-k; \sigma)$ for $k \equiv 0 \pmod{p-1}$ and $\zeta_S, p(s, \sigma)$ is p-adically analytic on a disc in \mathbb{C} containing $s = 0$.

Paul Thomas Young (College of Charleston) Explicit computation of Gross-Stark units over real quadratic fields December 19, 2012 6 / 20
Partial zeta functions

Suppose K is a totally complex abelian extension of a real quadratic field F, with $G = \text{Gal}(K/F)$. Choose a prime (p) of \mathbb{Z} which splits as $(p) = p\overline{p}$ in F, and such that p splits completely in K. Let the set T consist of \overline{p} together with all infinite primes of \mathcal{O}_F and all finite primes of \mathcal{O}_F which ramify in K, and $S = T \cup \{p\}$. Associated to every $\sigma \in G$ there is a \textit{partial zeta function} $\zeta_S(s; \sigma)$ defined by

$$
\zeta_S(s; \sigma) = \sum_{\sigma_A = \sigma} N A^{-s}, \quad (\Re(s) > 1),
$$

where the sum is over all ideals A of \mathcal{O}_K relatively prime to all ideals in the set S and having the specified automorphism $\sigma_A = \sigma$ as its image in G under the Artin map. It has an analytic continuation to all of \mathbb{C} except a simple pole at $s = 1$.

\textbf{Cassou-Nogues (1979):} There also exists a p-adic partial zeta function $\zeta_{S,p}(s, \sigma)$ for each $\sigma \in G$ such that

$$
\zeta_{S,p}(-k; \sigma) = \zeta_S(-k; \sigma) \quad \text{for} \quad k \equiv 0 \pmod{p - 1}
$$

and $\zeta_{S,p}(s, \sigma)$ is p-adically analytic on a disc in \mathbb{C}_p containing $s = 0$.

Paul Thomas Young (College of Charleston) Explicit computation of Gross-Stark units over real quadratic fields December 19, 2012 6 / 20
Let F, K, $(p) = p\overline{p}$, S, and T be as above, and define the subgroup

$$U_p = \{ \beta \in K^\times : |\beta|_\mathfrak{Q} = 1 \text{ if } \mathfrak{Q} \nmid p \}$$

of K^\times. Fix a prime ideal \mathfrak{P} of \mathcal{O}_K lying over p and denote by $x \mapsto x\mathfrak{P}$ the embedding of K into \mathbb{Q}_p corresponding to \mathfrak{P}. Then there exists a unique element $\alpha \in U_p$ such that

$$(\sigma(\alpha))^\mathfrak{P} = p^{w_p\zeta_T(0; \sigma)} \exp^{\mathfrak{p}}(\frac{w_p\zeta_S(0; \sigma)}{w_p})$$

for all $\sigma \in G$, and $K(\alpha^{1/w_K})$ is an abelian extension of F. In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p, and $\exp^{\mathfrak{p}}(x) = \sum k x^k/k!$ is the p-adic exponential, convergent for $x \in \mathbb{Z}_p$. It is known that $w_p\zeta_T(0; \sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).

This theorem was recently proved (Annals 2011), in the case described above, by Darmon, Dasgupta, and Pollack, without directly constructing α. Brett and I give an algorithm using G_p, \mathfrak{p} to compute the right side in \mathbb{Q}_p, and explicitly gives the irreducible polynomial $f_\alpha \in F[X]$ whose roots are the $\sigma(\alpha)$.

Paul Thomas Young (College of Charleston) Explicit computation of Gross-Stark units over real qu December 19, 2012 7 / 20
Let $F, K, (p) = \mathfrak{p}\mathfrak{p}, S, \text{ and } T$ be as above, and define the subgroup

$$U_p = \{\beta \in K^\times : |\beta|_\mathfrak{Q} = 1 \quad \text{if} \quad \mathfrak{Q} \nmid p\} \quad \text{of} \quad K^\times.$$

Fix a prime ideal \mathfrak{P} of \mathcal{O}_K lying over p and denote by $x \mapsto x_{\mathfrak{P}}$ the embedding of K into \mathbb{Q}_p corresponding to \mathfrak{P}. Then there exists a unique element $\alpha \in U_p$ such that

1. $$(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p \zeta_T(0; \sigma)} \exp_p(-w_p \zeta'_{S, p}(0; \sigma)) \quad \text{for all } \sigma \in G,$$ and
Let F, K, $(p) = p\mathfrak{p}$, S, and T be as above, and define the subgroup

$$U_p = \{ \beta \in K^\times : |\beta|_\mathfrak{Q} = 1 \text{ if } \mathfrak{Q} \nmid p \}$$

of K^\times.

Fix a prime ideal \mathfrak{P} of \mathcal{O}_K lying over p and denote by $x \mapsto x_{\mathfrak{P}}$ the embedding of K into \mathbb{Q}_p corresponding to \mathfrak{P}. Then there exists a unique element $\alpha \in U_p$ such that

1. $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p \zeta_T(0;\sigma)} \exp_p(-w_p \zeta_S,p(0;\sigma))$ for all $\sigma \in G$, and
2. $K(\alpha^{1/w_K})$ is an abelian extension of F.

In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p, and $\exp_p(x) = \sum k(x^k/k!)$ is the p-adic exponential, convergent for $x \in 2p\mathbb{Z}_p$. It is known that $w_p \zeta_T(0;\sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).

This theorem was recently proved (Annals 2011), in the case described above, by Darmon, Dasgupta, and Pollack, without directly constructing α.

Brett and I give an algorithm using G, 2 to compute the right side in \mathbb{Q}_p, and explicitly gives the irreducible polynomial $f_\alpha \in F[X]$ whose roots are the $\sigma(\alpha)$.
Gross’ refined conjecture (1982)

Let F, K, $(p) = \mathfrak{p}\mathfrak{p}$, S, and T be as above, and define the subgroup

$$U_p = \{\beta \in K^\times : |\beta|_\mathfrak{Q} = 1 \text{ if } \mathfrak{Q} \not| p\} \text{ of } K^\times.$$

Fix a prime ideal \mathfrak{P} of \mathcal{O}_K lying over p and denote by $x \mapsto x_{\mathfrak{P}}$ the embedding of K into \mathbb{Q}_p corresponding to \mathfrak{P}. Then there exists a unique element $\alpha \in U_p$ such that

- $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_S,\mathfrak{p}(0;\sigma))$ for all $\sigma \in G$, and
- $K(\alpha^{1/w_K})$ is an abelian extension of F.

In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p, and $\exp_p(x) = \sum_k (x^k/k!)$ is the p-adic exponential, convergent for $x \in 2p\mathbb{Z}_p$. It is known that $w_p\zeta_T(0;\sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).
Gross’ refined conjecture (1982)

Let F, K, $(p) = p\mathfrak{p}$, S, and T be as above, and define the subgroup

$$U_p = \{ \beta \in K^\times : |\beta|_\mathfrak{Q} = 1 \text{ if } \mathfrak{Q} \nmid p \} \text{ of } K^\times.$$

Fix a prime ideal \mathfrak{P} of \mathcal{O}_K lying over p and denote by $x \mapsto x_{\mathfrak{P}}$ the embedding of K into \mathbb{Q}_p corresponding to \mathfrak{P}. Then there exists a unique element $\alpha \in U_p$ such that

- $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p \zeta_T(0; \sigma)} \exp_p(-w_p \zeta'_S, p(0; \sigma))$ for all $\sigma \in G$, and

- $K(\alpha^{1/w_K})$ is an abelian extension of F.

In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p, and $\exp_p(x) = \sum_k (x^k / k!)$ is the p-adic exponential, convergent for $x \in 2p\mathbb{Z}_p$. It is known that $w_p \zeta_T(0; \sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).

This theorem was recently proved (Annals 2011), in the case described above, by Darmon, Dasgupta, and Pollack, without directly constructing α.

Explicit computation of Gross-Stark units over real quadratic base fields
December 19, 2012 7 / 20
Gross’ refined conjecture (1982)

Let F, K, $(p) = p\mathfrak{p}$, S, and T be as above, and define the subgroup

$$U_p = \{ \beta \in K^\times : |\beta|_\wp = 1 \quad \text{if} \quad \wp \not| p \}$$

of K^\times.

Fix a prime ideal \mathfrak{P} of \mathcal{O}_K lying over p and denote by $x \mapsto x_{\mathfrak{P}}$ the embedding of K into \mathbb{Q}_p corresponding to \mathfrak{P}. Then there exists a unique element $\alpha \in U_p$ such that

- $(\sigma(\alpha))_{\mathfrak{P}} = p^{w_p \zeta_T(0;\sigma)} \exp_p(-w_p \zeta'_S,p(0;\sigma))$ for all $\sigma \in G$, and

- $K(\alpha^{1/w_K})$ is an abelian extension of F.

In this formula w_p denotes the number of roots of unity in \mathbb{Q}_p, and $\exp_p(x) = \sum_k (x^k/k!)$ is the p-adic exponential, convergent for $x \in 2p\mathbb{Z}_p$. It is known that $w_p \zeta_T(0;\sigma)$ is an integer; there are efficient algorithms for computing it (Tangedal, JNT 2007).

- This theorem was recently proved (Annals 2011), in the case described above, by Darmon, Dasgupta, and Pollack, without directly constructing α.

- Brett and I give an algorithm using $G_{p,2}$ to compute the right side in \mathbb{Q}_p, and explicitly gives the irreducible polynomial $f_\alpha \in F[X]$ whose roots are the $\sigma(\alpha)$.
The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with $d > 0$ to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = p\overline{p}$ in \mathcal{O}_F. Use characters on the ray class group $\mathcal{H} + (m)$ for a suitable ideal m to specify a totally complex abelian extension K of F in which p splits completely; the Galois group $G = \text{Gal}(K/F)$ is a specified subgroup of $\mathcal{H} + (m)$.

Compute the values $w_p \zeta_T(0; \sigma)$ and $\exp_p(-w_p \zeta'_S(0; \sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_p, 2$ function, to any desired accuracy. By Gross' formula, we now know all $\sigma(\alpha)$ as elements of \mathbb{Q}_p to any desired accuracy; we then must realize the coefficients of the polynomial $f_\alpha(x) = \prod_{\sigma \in G} (x - \sigma(\alpha))$ as elements of F.

Once we know the polynomial $f_\alpha \in F[x]$, then we know the field $K = F(\alpha)$ explicitly. At this point we verify computationally that $\alpha \in U_p$ and that $F(\alpha)$ is in fact the field K originally specified; that is, it has the correct Galois group and the correct discriminant. And just like that, we have explicitly described an abelian extension K of F, which was originally described algebraically, using p-adic analysis. Yeah baby!
The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with $d > 0$ to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = pp$ in O_F.

- Use characters on the ray class group $H_+(m)$ for a suitable ideal m to specify a totally complex abelian extension K of F in which p splits completely; the Galois group $G = \text{Gal}(K/F)$ is a specified subgroup of $H_+(m)$.
The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with $d > 0$ to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = pp$ in \mathcal{O}_F.

- Use characters on the ray class group $H_+(m)$ for a suitable ideal m to specify a totally complex abelian extension K of F in which p splits completely; the Galois group $G = \text{Gal}(K/F)$ is a specified subgroup of $H_+(m)$.

- Compute the values $w_p \zeta_T(0; \sigma)$ and $\exp_p(-w_p \zeta_{S,p}'(0; \sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.
The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with $d > 0$ to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = \mathfrak{p}\mathfrak{p}$ in \mathcal{O}_F.

- Use characters on the ray class group $H_+(m)$ for a suitable ideal m to specify a totally complex abelian extension K of F in which p splits completely; the Galois group $G = \text{Gal}(K/F)$ is a specified subgroup of $H_+(m)$.

- Compute the values $w_p \zeta_T(0; \sigma)$ and $\exp_p(-w_p \zeta'_S, p(0; \sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.

- By Gross’ formula, we now know all $\sigma(\alpha)$ as elements of \mathbb{Q}_p to any desired accuracy; we then must realize the coefficients of the polynomial $f_{\alpha}(x) = \prod_{\sigma \in G}(x - \sigma(\alpha))$ as elements of F.

Once we know the polynomial $f_{\alpha} \in F[x]$, then we know the field $K = F(\alpha)$ explicitly. At this point we verify computationally that $\alpha \in U_p$ and that $F(\alpha)$ is in fact the field K originally specified; that is, it has the correct Galois group and the correct discriminant.

And just like that, we have explicitly described an abelian extension K of F, which was originally described algebraically, using p-adic analysis. Yeah baby!
The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with $d > 0$ to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = p\overline{p}$ in \mathcal{O}_F.

- Use characters on the ray class group $H_+(m)$ for a suitable ideal m to specify a totally complex abelian extension K of F in which p splits completely; the Galois group $G = \text{Gal}(K/F)$ is a specified subgroup of $H_+(m)$.

- Compute the values $\wp\zeta_T(0; \sigma)$ and $\exp_\wp(-\wp\zeta'_S,p(0; \sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.

- By Gross' formula, we now know all $\sigma(\alpha)$ as elements of \mathbb{Q}_p to any desired accuracy; we then must realize the coefficients of the polynomial $f_\alpha(x) = \prod_{\sigma \in G}(x - \sigma(\alpha))$ as elements of F.

- Once we know the polynomial $f_\alpha \in F[x]$, then we know the field $K = F(\alpha)$ explicitly. At this point we verify computationally that $\alpha \in U_p$ and that $F(\alpha)$ is in fact the field K originally specified; that is, it has the correct Galois group and the correct discriminant.

And just like that, we have explicitly described an abelian extension K of F, which was originally described algebraically, using p-adic analysis. Yeah baby!
The algorithm

First, explicitly choose a real quadratic field $F = \mathbb{Q}(\sqrt{d})$ with $d > 0$ to serve as base field; also choose a prime (p) of \mathbb{Z} that splits as $(p) = p\overline{p}$ in \mathcal{O}_F.

- Use characters on the ray class group $H_+(m)$ for a suitable ideal m to specify a totally complex abelian extension K of F in which p splits completely; the Galois group $G = \text{Gal}(K/F)$ is a specified subgroup of $H_+(m)$.

- Compute the values $w_p\zeta_T(0; \sigma)$ and $\exp_p(-w_p\zeta'_{S,p}(0; \sigma))$ for all $\sigma \in G$; these are computed in \mathbb{Q}_p using our $G_{p,2}$ function, to any desired accuracy.

- By Gross' formula, we now know all $\sigma(\alpha)$ as elements of \mathbb{Q}_p to any desired accuracy; we then must realize the coefficients of the polynomial $f_\alpha(x) = \prod_{\sigma \in G}(x - \sigma(\alpha))$ as elements of F.

- Once we know the polynomial $f_\alpha \in F[x]$, then we know the field $K = F(\alpha)$ explicitly. At this point we verify computationally that $\alpha \in U_p$ and that $F(\alpha)$ is in fact the field K originally specified; that is, it has the correct Galois group and the correct discriminant.

- And just like that, we have explicitly described an abelian extension K of F, which was originally described algebraically, using p-adic analysis. Yeah baby!
Computation of $\zeta'_{S,p}(0, \sigma)$

Using a continued fraction algorithm due to Hayes, each partial zeta function $\zeta_{S,p}(0, \sigma)$ can be decomposed into a finite sum of Shintani zeta functions

$$\zeta_S(0, \sigma) = \sum_{j=1}^{M} z_2(0, (\{z_j\}, \langle w_j \rangle, (\beta_j^{(1)}, \beta_j^{(2)}))).$$

Also holds, where $G_{p,2}(x; (\omega_1, \omega_2))$ is our p-adic double log gamma function.
Using a continued fraction algorithm due to Hayes, each partial zeta function \(\zeta_{S,p}(0, \sigma) \) can be decomposed into a finite sum of Shintani zeta functions

\[
\zeta_S(0, \sigma) = \sum_{j=1}^{M} z_2(0, (\{z_j\}, \langle w_j \rangle), (\beta_j^{(1)}, \beta_j^{(2)})).
\]

Using a formula due to Shintani, its partial derivative at \(s = 0 \) can be expressed as \(\zeta'_S(0, \sigma) \)

\[
= \sum_{j=1}^{M} \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(1)}, (1, \beta_j^{(1)})) + \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(2)}, (1, \beta_j^{(2)}))
\]

where \(\Gamma_2(x; (\omega_1, \omega_2)) \) is the complex double log gamma function.
Computation of $\zeta_{S,p}'(0, \sigma)$

Using a continued fraction algorithm due to Hayes, each partial zeta function $\zeta_{S,p}(0, \sigma)$ can be decomposed into a finite sum of Shintani zeta functions

$$\zeta_{S}(0, \sigma) = \sum_{j=1}^{M} z_2(0, \{z_j\}, \langle w_j \rangle, (\beta_j^{(1)}, \beta_j^{(2)})).$$

- Using a formula due to Shintani, its partial derivative at $s = 0$ can be expressed as $\zeta_{S}'(0, \sigma)$

$$= \sum_{j=1}^{M} \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(1)}, (1, \beta_j^{(1)})) + \log \Gamma_2(\{z_j\} + \langle w_j \rangle \beta_j^{(2)}, (1, \beta_j^{(2)}))$$

where $\Gamma_2(x; (\omega_1, \omega_2))$ is the complex double log gamma function.

- Using results of Kashio and T.-Y., the p-adic analogue $\zeta_{S,p}'(0, \sigma)$

$$= \sum_{j=1}^{M} G_{p,2}(\{z_j\} + \langle w_j \rangle (\beta_j)_p, (1, (\beta_j)_p)) + G_{p,2}(\{z_j\} + \langle w_j \rangle (\beta_j)_{\overline{p}}, (1, (\beta_j)_{\overline{p}}))$$

also holds, where $G_{p,2}(x; (\omega_1, \omega_2))$ is our p-adic double log gamma function.
The p-adic double log gamma function $G_{p,2}$

Initially defined on $\mathbb{C}_p \setminus \mathbb{Z}_p$ by a p-adic double integral, we actually compute these $G_{p,2}$ values by our “large x” expansion

$$G_{p,2}(x; \bar{\omega}) = -\frac{1}{2} B_{2,2}(x; \bar{\omega}) \log p x + \frac{3}{4 \omega_1 \omega_2} x^2 + B_{2,1}(0; \bar{\omega}) x$$

$$+ \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0; \bar{\omega})}{j(j-1)(j-2)} x^{2-j},$$

which converges for $|x|_p > \max\{|\omega_1|_p, |\omega_2|_p\}$. Here the $B_{2,j}(x; \bar{\omega})$ are second-order Bernoulli polynomials.
The p-adic double log gamma function $G_{p,2}$

Initially defined on $\mathbb{C}_p \setminus \mathbb{Z}_p$ by a p-adic double integral, we actually compute these $G_{p,2}$ values by our “large x” expansion

\[
G_{p,2}(x; \bar{\omega}) = -\frac{1}{2}B_{2,2}(x; \bar{\omega})\log p x + \frac{3}{4\omega_1\omega_2}x^2 + B_{2,1}(0; \bar{\omega})x + \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0; \bar{\omega})}{j(j-1)(j-2)}x^{2-j},
\]

which converges for $|x|_p > \max\{|\omega_1|_p, |\omega_2|_p\}$. Here the $B_{2,j}(x; \bar{\omega})$ are second-order Bernoulli polynomials.

- If this series is truncated after the $j = m$ term, the approximation obtained for $G_{p,2}(x, (\omega_1, \omega_2))$ is accurate to at least k p-adic digits, where

\[
k \geq \begin{cases}
 m - 3 - \left\lfloor \frac{\log(m+1)}{\log p} \right\rfloor, & p > 2; \\
 m - 4 - \left\lfloor \frac{\log(m+1)}{\log p} \right\rfloor, & p = 2.
\end{cases}
\]
Realizing the coefficients in $F = \mathbb{Q}(\sqrt{d})$

So we can compute the p-adic expansions of the coefficients λ_i of

$$f_\alpha(x) = \prod_{\sigma \in G} (x - \sigma(\alpha)) = x^n - \lambda_{n-1}x^{n-1} + \lambda_{n-2}x^{n-2} - \cdots + \lambda_0 \in F[x]$$

in \mathbb{Q}_p to as many p-adic digits as we like. How do we realize them in $F = \mathbb{Q}(\sqrt{d})$?
Realizing the coefficients in $F = \mathbb{Q}(\sqrt{d})$

So we can compute the p-adic expansions of the coefficients λ_i of

$$f_\alpha(x) = \prod_{\sigma \in G} (x - \sigma(\alpha)) = x^n - \lambda_{n-1} x^{n-1} + \lambda_{n-2} x^{n-2} - \cdots + \lambda_0 \in F[x]$$

in \mathbb{Q}_p to as many p-adic digits as we like. How do we realize them in $F = \mathbb{Q}(\sqrt{d})$?

Lemma. If $\lambda_j = a_j + b_j \theta$ with $a_j, b_j \in \mathbb{Q}$, then a_j, b_j are both of the form cp^ν where $\nu \in \mathbb{Z}$ are given in terms of the integers $\{w_p \zeta_T(0, \sigma)\}_{\sigma \in G}$, and

$$|b_j| \leq 2 \binom{n}{j} / \sqrt{d}$$

and

$$|a_j| \leq \begin{cases} \binom{n}{j}, & d \equiv 0 \text{ mod } (4), \\ \binom{n}{j}(1 + 1/\sqrt{d}), & d \equiv 1 \text{ mod } (4). \end{cases}$$
Realizing the coefficients in $F = \mathbb{Q}(\sqrt{d})$

So we can compute the p-adic expansions of the coefficients λ_i of

$$f_\alpha(x) = \prod_{\sigma \in G} (x - \sigma(\alpha)) = x^n - \lambda_{n-1}x^{n-1} + \lambda_{n-2}x^{n-2} - \cdots + \lambda_0 \in F[x]$$

in \mathbb{Q}_p to as many p-adic digits as we like. How do we realize them in $F = \mathbb{Q}(\sqrt{d})$?

Lemma. If $\lambda_j = a_j + b_j\theta$ with $a_j, b_j \in \mathbb{Q}$, then a_j, b_j are both of the form cp^ν where $\nu \in \mathbb{Z}$ are given in terms of the integers $\{w_p \zeta_T(0, \sigma)\}_{\sigma \in G}$, and

$$|b_j| \leq 2 \binom{n}{j} / \sqrt{d}$$

and

$$|a_j| \leq \begin{cases} \binom{n}{j}, & d \equiv 0 \text{ mod } (4), \\ \binom{n}{j}(1 + 1/\sqrt{d}), & d \equiv 1 \text{ mod } (4). \end{cases}$$

Here $\{1, \theta\}$ is a \mathbb{Z}-basis for \mathcal{O}_F satisfying $\theta_p - \theta_p^{-1} = \sqrt{d}$; that is,

$$\theta = \begin{cases} \sqrt{d}/2, & d \equiv 0 \text{ mod } (4), \\ (1 + \sqrt{d})/2, & d \equiv 1 \text{ mod } (4). \end{cases}$$
Realizing the coefficients, continued

The “trace” coefficient $\lambda_{n-1} = \sum_{\sigma \in G} \sigma(\alpha) \in F$ has p-adic absolute value $|\lambda_{n-1}|_p = p^r$, where $r = \max\{w_p \zeta_T(0, \sigma)\}_{\sigma \in G}$; but since $\alpha \in U_p$ it has \bar{p}-adic absolute value $|\lambda_{n-1}|_{\bar{p}} \leq 1$.
The “trace” coefficient $\lambda_{n-1} = \sum_{\sigma \in G} \sigma(\alpha) \in F$ has \mathfrak{p}-adic absolute value $|\lambda_{n-1}|_\mathfrak{p} = \mathfrak{p}^r$, where $r = \max\{w_\mathfrak{p} \zeta_T(0, \sigma)\}_{\sigma \in G}$; but since $\alpha \in U_\mathfrak{p}$ it has \mathfrak{p}-adic absolute value $|\lambda_{n-1}|_\mathfrak{p} \leq 1$.

If $\lambda_{n-1} = (c_{n-1} + e_{n-1} \theta)/\mathfrak{p}^r$ with $c_{n-1}, e_{n-1} \in \mathbb{Z}$, and we obtain an approximation $\beta \in \mathbb{Z}_\mathfrak{p}$ to $\mathfrak{p}^r(\lambda_{n-1})_\mathfrak{p}$ accurate to N digits, where $N \geq r$, then

$$|c_{n-1} + e_{n-1} \theta_\mathfrak{p} - \beta|_\mathfrak{p} \leq \mathfrak{p}^{-N} \quad \text{and} \quad |c_{n-1} + e_{n-1} \theta_\mathfrak{p}|_\mathfrak{p} \leq \mathfrak{p}^{-r}$$

$$\implies |c_{n-1} + e_{n-1} \theta_\mathfrak{p} - \beta - (c_{n-1} + e_{n-1} \theta_\mathfrak{p})|_\mathfrak{p} \leq \mathfrak{p}^{-r}$$

$$\implies |e_{n-1}(\theta_\mathfrak{p} - \theta_\mathfrak{p}) - \beta|_\mathfrak{p} = |e_{n-1} \sqrt{d} - \beta|_\mathfrak{p} \leq \mathfrak{p}^{-r}$$

$$\implies |e_{n-1} - \beta/\sqrt{d}|_\mathfrak{p} \leq \mathfrak{p}^{-r}$$

so β/\sqrt{d} gives the integer e_{n-1} accurate to at least r base p digits.
Realizing the coefficients, continued

The “trace” coefficient \(\lambda_{n-1} = \sum_{\sigma \in G} \sigma(\alpha) \in F \) has \(p \)-adic absolute value \(|\lambda_{n-1}|_p = p^r\), where \(r = \max\{w_p\zeta_T(0, \sigma)\}_{\sigma \in G} \); but since \(\alpha \in U_p \) it has \(\overline{p} \)-adic absolute value \(|\lambda_{n-1}|_{\overline{p}} \leq 1\).

- If \(\lambda_{n-1} = (c_{n-1} + e_{n-1}\theta)/p^r \) with \(c_{n-1}, e_{n-1} \in \mathbb{Z} \), and we obtain an approximation \(\beta \in \mathbb{Z}_p \) to \(p^r(\lambda_{n-1})_p \) accurate to \(N \) digits, where \(N \geq r \), then

\[
|c_{n-1} + e_{n-1}\theta_p - \beta|_p \leq p^{-N} \quad \text{and} \quad |c_{n-1} + e_{n-1}\theta_{\overline{p}}|_p \leq p^{-r}
\]

\[
\implies |c_{n-1} + e_{n-1}\theta_p - \beta - (c_{n-1} + e_{n-1}\theta_{\overline{p}})|_p \leq p^{-r}
\]

\[
\implies |e_{n-1}(\theta_p - \theta_{\overline{p}}) - \beta|_p = |e_{n-1}\sqrt{d} - \beta|_p \leq p^{-r}
\]

\[
\implies |e_{n-1} - \beta/\sqrt{d}|_p \leq p^{-r}
\]

so \(\beta/\sqrt{d} \) gives the integer \(e_{n-1} \) accurate to at least \(r \) base \(p \) digits.

- This specifies the integer \(e_{n-1} \) to one of at most \(\lceil 4n/\sqrt{d} \rceil \) candidates; exactly one of these has \(c_{n-1} = \beta - e_{n-1}\theta_p \) recognizable as an integer.
Realizing the coefficients, continued

The “trace” coefficient $\lambda_{n-1} = \sum_{\sigma \in G} \sigma(\alpha) \in F$ has p-adic absolute value $|\lambda_{n-1}|_p = p^r$, where $r = \max\{w_p \zeta_T(0, \sigma)\}_{\sigma \in G}$; but since $\alpha \in U_p$ it has \overline{p}-adic absolute value $|\lambda_{n-1}|_{\overline{p}} \leq 1$.

- If $\lambda_{n-1} = (c_{n-1} + e_{n-1}\theta)/p^r$ with $c_{n-1}, e_{n-1} \in \mathbb{Z}$, and we obtain an approximation $\beta \in \mathbb{Z}_p$ to $p^r(\lambda_{n-1})_p$ accurate to N digits, where $N \geq r$, then

 $|c_{n-1} + e_{n-1}\theta_p - \beta|_p \leq p^{-N}$ and $|c_{n-1} + e_{n-1}\theta_{\overline{p}}|_p \leq p^{-r}$

 $\implies |c_{n-1} + e_{n-1}\theta_p - \beta - (c_{n-1} + e_{n-1}\theta_{\overline{p}})|_p \leq p^{-r}$

 $\implies |e_{n-1}(\theta_p - \theta_{\overline{p}}) - \beta|_p = |e_{n-1}\sqrt{d} - \beta|_p \leq p^{-r}$

 $\implies |e_{n-1} - \beta/\sqrt{d}|_p \leq p^{-r}$

so β/\sqrt{d} gives the integer e_{n-1} accurate to at least r base p digits.

- This specifies the integer e_{n-1} to one of at most $\lceil 4n/\sqrt{d} \rceil$ candidates; exactly one of these has $c_{n-1} = \beta - e_{n-1}\theta_p$ recognizable as an integer.

- An analogous argument realizes the other coefficients $\lambda_i = (c_i + e_i\theta)/p^{r_i}$.
An example over the real quadratic field $F = \mathbb{Q}(\sqrt{29})$

The real quadratic field $F = \mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x) = x^2 - x - 7$. The prime ideal (7) of \mathbb{Z} splits as $(7) = p\overline{p} = (6 + \sqrt{29})(6 - \sqrt{29})$ in \mathcal{O}_F; there are two embeddings of F into \mathbb{Q}_7 corresponding to p and \overline{p}; the two roots of f_{29} are $\theta_p, \theta_{\overline{p}} = (1 \pm \sqrt{29})/2$.
An example over the real quadratic field $F = \mathbb{Q}(\sqrt{29})$

The real quadratic field $F = \mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x) = x^2 - x - 7$. The prime ideal (7) of \mathbb{Z} splits as $(7) = p\overline{p} = (6 + \sqrt{29})(6 - \sqrt{29})$ in \mathcal{O}_F; there are two embeddings of F into \mathbb{Q}_7 corresponding to p and \overline{p}; the two roots of f_{29} are $\theta_p, \theta_{\overline{p}} = (1 \pm \sqrt{29})/2$.

- We set $T = \{p_\infty^{(1)}, p_\infty^{(2)}, q, \overline{p}\}$ and $m = q\overline{p}$, where q is a prime ideal of \mathcal{O}_F lying over (13). The narrow ray class group $H_+(m)$ is isomorphic to $C_6 \times C_2$ and there is a sextic character χ on $H_+(m)$ with conductor $f(\chi) = mp_\infty^{(1)}p_\infty^{(2)}$; by class field theory there exists an abelian extension K/F corresponding to the subgroup of characters generated by χ with $G = \text{Gal}(K/F)$ cyclic of order 6.
An example over the real quadratic field $F = \mathbb{Q}(\sqrt{29})$

The real quadratic field $F = \mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x) = x^2 - x - 7$. The prime ideal (7) of \mathbb{Z} splits as $(7) = \mathfrak{p}\overline{\mathfrak{p}} = (6 + \sqrt{29})(6 - \sqrt{29})$ in \mathcal{O}_F; there are two embeddings of F into \mathbb{Q}_7 corresponding to \mathfrak{p} and $\overline{\mathfrak{p}}$; the two roots of f_{29} are $\theta_{\mathfrak{p}}, \theta_{\overline{\mathfrak{p}}} = (1 \pm \sqrt{29})/2$.

- We set $T = \{\mathfrak{p}_\infty^{(1)}, \mathfrak{p}_\infty^{(2)}, q, \overline{p}\}$ and $m = q\overline{p}$, where q is a prime ideal of \mathcal{O}_F lying over (13). The narrow ray class group $H_+(m)$ is isomorphic to $C_6 \times C_2$ and there is a sextic character χ on $H_+(m)$ with conductor $f(\chi) = mp_\infty^{(1)}p_\infty^{(2)}$; by class field theory there exists an abelian extension K/F corresponding to the subgroup of characters generated by χ with $G = \text{Gal}(K/F)$ cyclic of order 6.
- By the form of the conductor $f(\chi)$ and the fact that $\chi(\mathfrak{p}) = 1$ we know that K is totally complex, both q and \overline{p} ramify in the extension K/F, no other primes of \mathcal{O}_F ramify, and \mathfrak{p} splits completely in K/F.

The real quadratic field $F = \mathbb{Q}(\sqrt{29})$ is the splitting field over \mathbb{Q} of the polynomial $f_{29}(x) = x^2 - x - 7$. The prime ideal (7) of \mathbb{Z} splits as $(7) = p\bar{p} = (6 + \sqrt{29})(6 - \sqrt{29})$ in \mathcal{O}_F; there are two embeddings of F into \mathbb{Q}_7 corresponding to p and \bar{p}; the two roots of f_{29} are $\theta_p, \theta_{\bar{p}} = (1 \pm \sqrt{29})/2$.

- We set $T = \{p_1, p_\infty, q, \bar{p}\}$ and $m = q\bar{p}$, where q is a prime ideal of \mathcal{O}_F lying over (13). The narrow ray class group $H_+(m)$ is isomorphic to $C_6 \times C_2$ and there is a sextic character χ on $H_+(m)$ with conductor $f(\chi) = mp_1p_\infty$; by class field theory there exists an abelian extension K/F corresponding to the subgroup of characters generated by χ with $G = \text{Gal}(K/F)$ cyclic of order 6.

- By the form of the conductor $f(\chi)$ and the fact that $\chi(p) = 1$ we know that K is totally complex, both q and \bar{p} ramify in the extension K/F, no other primes of \mathcal{O}_F ramify, and p splits completely in K/F.

- Our goal is to 7-adically compute the six conjugates $\{\sigma(\alpha)\}_{\sigma \in G}$ of the Gross-Stark unit $\alpha \in K$ for the extension K/F and the prime $p = 7$, and recognize the minimal polynomial $f_\alpha \in F[x]$, using only information from F.
Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in O_K lying above p in O_F.

Using a partial fraction algorithm we compute the values $\zeta_T(0,\sigma_0) = 0$ for the identity σ_0, and $\zeta_T(0,\sigma_2) = -2$, $\zeta_T(0,\sigma_3) = 0$, $\zeta_T(0,\sigma_4) = 2$, and $\zeta_T(0,\sigma_5) = 0$, where σ is the generator of G corresponding to χ.

The p-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0,\sigma)$; since $w_7 = 6$ we have the 7-adic absolute values \{7^{12}, 1, 1, 1, 1, 7^{-12}\} for $\alpha_\mathfrak{P}$ and its conjugates.

Recall that, since $\alpha \in U_p$, the absolute value of α with respect to every other absolute value on K is 1.

The minimal polynomial of α over F is of the form $f_\alpha(x) = x^6 - \lambda_5 x^5 + \lambda_4 x^4 - \lambda_3 x^3 + \lambda_2 x^2 - \lambda_1 x + 1 \in F[x]$ where each $\lambda_i = (c_i + e_i \theta) / 7^{12}$ for some $c_i, e_i \in \mathbb{Z}$, and $\theta = (1 + \sqrt{29})/2$.
Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{p} in \mathcal{O}_K lying above p in \mathcal{O}_F.

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0, and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ.

The p-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = \frac{\lambda}{7^{12}}$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for α and its conjugates.

Recall that, since $\alpha \in U_p$, the absolute value of α with respect to every other absolute value on K is 1.

The minimal polynomial of α over F is of the form $f_\alpha(x) = x^6 - \lambda_5 x^5 + \lambda_4 x^4 - \lambda_3 x^3 + \lambda_2 x^2 - \lambda_1 x + 1 \in F[x]$ where each $\lambda_i = (c_i + e_i \theta)/7^{12}$ for some $c_i, e_i \in \mathbb{Z}$, and $\theta = (1 + \sqrt{29})/2$.

We can recognize all the c_i, e_i by computing all the $\sigma(\alpha)_P$ accurate to just a few more than twelve 7-adic digits.
Absolute values of the Gross-Stark unit

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{p} in \mathcal{O}_K lying above p in \mathcal{O}_F.

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0, and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ.
- The p-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p\zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_{\mathfrak{p}}$ and its conjugates.
Absolute values of the Gross-Stark unit

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{p} in \mathcal{O}_K lying above p in \mathcal{O}_F.

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0, and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ.

- The p-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_{\mathfrak{p}}$ and its conjugates.

- Recall that, since $\alpha \in U_p$, the absolute value of α with respect to every other absolute value on K is 1.
Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{p} in \mathcal{O}_K lying above p in \mathcal{O}_F.

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0, and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ.

- The p-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_\mathfrak{p}$ and its conjugates.

- Recall that, since $\alpha \in U_p$, the absolute value of α with respect to every other absolute value on K is 1.

- The minimal polynomial of α over F is of the form

$$f_\alpha(x) = x^6 - \lambda_5 x^5 + \lambda_4 x^4 - \lambda_3 x^3 + \lambda_2 x^2 - \lambda_1 x + 1 \in F[x]$$

where each $\lambda_i = (c_i + e_i \theta)/7^{12}$ for some $c_i, e_i \in \mathbb{Z}$, and $\theta = (1 + \sqrt{29})/2$.

Choose an embedding of K into \mathbb{Q}_7 corresponding to some prime ideal \mathfrak{P} in \mathcal{O}_K lying above p in \mathcal{O}_F.

- Using a partial fraction algorithm we compute the values $\zeta_T(0, \sigma_0) = 0$ for the identity σ_0, and $\zeta_T(0, \sigma) = -2$, $\zeta_T(0, \sigma^2) = \zeta_T(0, \sigma^3) = 0$, $\zeta_T(0, \sigma^4) = 2$, and $\zeta_T(0, \sigma^5) = 0$, where σ is the generator of G corresponding to χ.

- The p-adic absolute values of the $\sigma(\alpha)$ are of the form p^{-r} where $r = w_p \zeta_T(0, \sigma)$; since $w_7 = 6$ we have the 7-adic absolute values $\{7^{12}, 1, 1, 1, 1, 7^{-12}\}$ for $\alpha_{\mathfrak{P}}$ and its conjugates.

- Recall that, since $\alpha \in U_p$, the absolute value of α with respect to every other absolute value on K is 1.

- The minimal polynomial of α over F is of the form

$$f_\alpha(x) = x^6 - \lambda_5 x^5 + \lambda_4 x^4 - \lambda_3 x^3 + \lambda_2 x^2 - \lambda_1 x + 1 \in F[x]$$

where each $\lambda_i = (c_i + e_i \theta)/7^{12}$ for some $c_i, e_i \in \mathbb{Z}$, and $\theta = (1 + \sqrt{29})/2$.

- We can recognize all the c_i, e_i by computing all the $\sigma(\alpha)_{\mathfrak{P}}$ accurate to just a few more than twelve 7-adic digits.
Computation of the values $\zeta'_{S,7}(0; \sigma)$

Gross’ formula states that $(\sigma(\alpha))_{\mathfrak{p}_3} = p^{w_p \zeta_T(0; \sigma)} \exp_p(-w_p \zeta'_{S,p}(0; \sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_{\mathfrak{p}_3} = 7^{6\zeta_T(0; \sigma)} \exp_7(-6 \zeta'_{S,7}(0; \sigma))$ in \mathbb{Q}_7. It is not obvious that $-6 \zeta'_{S,7}(0; \sigma)$ lies in the domain \mathbb{Z}_7 of \exp_7. Especially since we compute these values as sums of 7-adically large values.

It is remarkable that the values $\exp_7(-6 \zeta'_{S,7}(0; \sigma))$ should be algebraic. We compute these values in \mathbb{Q}_7. But Gross’ assertion that $\alpha \in U_{(p, t)}$ tells us the absolute values of the $\sigma(\alpha)$ with respect to every other embedding of K into \mathbb{C} or a p-adic field.

So not only are these values computable in \mathbb{Q}_7, and algebraic, but they are recognizable as specific algebraic numbers. Not only that, but they are special algebraic numbers – they generate a specific abelian extension of $F = \mathbb{Q}(\sqrt{29})$.

Paul Thomas Young (College of Charleston)
Computation of the values $\zeta'_{S,7}(0; \sigma)$

Gross’ formula states that $(\sigma(\alpha))_{\wp} = p^{w_p\zeta_T(0;\sigma)} \exp_p(-w_p\zeta'_{S,p}(0;\sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_{\wp} = 7^6\zeta_T(0;\sigma) \exp_7(-6\zeta'_{S,7}(0;\sigma))$ in \mathbb{Q}_7.

- It is not obvious that $-6\zeta'_{S,7}(0;\sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7.

Especially since we compute these values as sums of 7-adically large values.
Computation of the values $\zeta_{S,7}'(0; \sigma)$

Gross’ formula states that $(\sigma(\alpha))_\mathfrak{p} = p^{w_p \zeta_T(0;\sigma)} \exp_p(-w_p \zeta_{S,7}'(0;\sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_\mathfrak{p} = 7^6 \zeta_T(0;\sigma) \exp_7(-6 \zeta_{S,7}'(0;\sigma))$ in \mathbb{Q}_7.

- It is not obvious that $-6 \zeta_{S,7}'(0;\sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7.

 Especially since we compute these values as sums of 7-adically large values.

- It is remarkable that the values $\exp_7(-6 \zeta_{S,7}'(0;\sigma))$ should be algebraic.
Gross’ formula states that \((\sigma(\alpha))_p = \wp^w_p \zeta_T(0; \sigma) \exp_p(-\wp \zeta'_S, p(0; \sigma))\) for all \(\sigma \in G\). We will compute the six values \((\sigma(\alpha))_p = 7^6 \zeta_T(0; \sigma) \exp_7(-6 \zeta'_S, 7(0; \sigma))\) in \(\mathbb{Q}_7\).

- It is not obvious that \(-6 \zeta'_S, 7(0; \sigma)\) lies in the domain \(7\mathbb{Z}_7\) of \(\exp_7\). Especially since we compute these values as sums of 7-adically large values.

- It is remarkable that the values \(\exp_7(-6 \zeta'_S, 7(0; \sigma))\) should be algebraic.

- We compute these values in \(\mathbb{Q}_7\). But Gross’ assertion that \(\alpha \in U_p\) tells us the absolute values of the \(\sigma(\alpha)\) with respect to every other embedding of \(K\) into \(\mathbb{C}\) or a \(p\)-adic field.
Gross’ formula states that \((\sigma(\alpha))_p = p^{w_p \zeta_T(0; \sigma)} \exp_p(-w_p \zeta'_S, \sigma(0; \sigma))\) for all \(\sigma \in G\).

We will compute the six values \((\sigma(\alpha))_p = 7^6 \zeta_T(0; \sigma) \exp_7(-6 \zeta'_S, 0; \sigma)\) in \(\mathbb{Q}_7\).

- It is not obvious that \(-6 \zeta'_S, 0; \sigma\) lies in the domain \(7\mathbb{Z}_7\) of \(\exp_7\).

 Especially since we compute these values as sums of 7-adically large values.

- It is remarkable that the values \(\exp_7(-6 \zeta'_S, 0; \sigma)\) should be algebraic.

- We compute these values in \(\mathbb{Q}_7\). But Gross’ assertion that \(\alpha \in U_p\) tells us the absolute values of the \(\sigma(\alpha)\) with respect to every other embedding of \(K\) into \(\mathbb{C}\) or a \(p\)-adic field.

- So not only are these values computable in \(\mathbb{Q}_7\), and algebraic, but they are recognizable as specific algebraic numbers.
Computation of the values $\zeta_{S,7}'(0; \sigma)$

Gross’ formula states that $(\sigma(\alpha))_\wp = p^{w_p \zeta_T(0; \sigma)} \exp_p(-w_p \zeta'_{S,p}(0; \sigma))$ for all $\sigma \in G$.

We will compute the six values $(\sigma(\alpha))_\wp = 7^6 \zeta_T(0; \sigma) \exp(7 (-6 \zeta'_{S,7}(0; \sigma)))$ in \mathbb{Q}_7.

- It is not obvious that $-6 \zeta'_{S,7}(0; \sigma)$ lies in the domain $7\mathbb{Z}_7$ of \exp_7.

 Especially since we compute these values as sums of 7-adically large values.

- It is remarkable that the values $\exp_7(-6 \zeta'_{S,7}(0; \sigma))$ should be algebraic.

- We compute these values in \mathbb{Q}_7. But Gross’ assertion that $\alpha \in U_p$ tells us the absolute values of the $\sigma(\alpha)$ with respect to every other embedding of K into \mathbb{C} or a p-adic field.

- So not only are these values computable in \mathbb{Q}_7, and algebraic, but they are recognizable as specific algebraic numbers.

- Not only that, but they are special algebraic numbers - they generate a specific abelian extension of $F = \mathbb{Q}(\sqrt{29})$.
Computation of the values $\zeta_{S,7}'(0; \sigma)$

Each $\zeta_{S,7}'(0; \sigma)$ is a finite sum of $\zeta_{m\mathfrak{p},7}'(0; C_+)$ values over all ideal classes C_+ in a coset of a subgroup of the narrow ray class group $H_+(m\mathfrak{p})$.

We have programmed all of this in PARI routines.
Computation of the values $\zeta'_{S,7}(0; \sigma)$

Each $\zeta'_{S,7}(0; \sigma)$ is a finite sum of $\zeta'_{mp,7}(0; C_+)$ values over all ideal classes C_+ in a coset of a subgroup of the narrow ray class group $H_+(mp)$.

- The partial fraction algorithm produces an ordered sequence of \mathbb{Z}-bases for an ideal mc of \mathcal{O}_F in the class C_+.

We have programmed all of this in PARI routines.
Computation of the values $\zeta'_{S,7}(0; \sigma)$

Each $\zeta'_{S,7}(0; \sigma)$ is a finite sum of $\zeta'_{m\mathfrak{p},7}(0; C_+)$ values over all ideal classes C_+ in a coset of a subgroup of the narrow ray class group $H_+(m\mathfrak{p})$.

- The partial fraction algorithm produces an ordered sequence of \mathbb{Z}-bases for an ideal mc of \mathcal{O}_F in the class C_+.

- This decomposes each term $\zeta'_{m\mathfrak{p},7}(0; C_+)$ into a finite sum of derivatives of Shintani zeta functions, which we compute as a finite sum of values $G_{7,2}(x_i; \bar{\omega}_i)$, where the x_i and $\bar{\omega}_i$ are given in terms of the parameters of the bases, and all satisfy $|x_i|_7 > ||\bar{\omega}_i||_7$.

We have programmed all of this in PARI routines.
Computation of the values $\zeta'_{S,7}(0; \sigma)$

Each $\zeta'_{S,7}(0; \sigma)$ is a finite sum of $\zeta'_{mp,7}(0; C_+)$ values over all ideal classes C_+ in a coset of a subgroup of the narrow ray class group $H_+(mp)$.

- The partial fraction algorithm produces an ordered sequence of \mathbb{Z}-bases for an ideal mc of \mathcal{O}_F in the class C_+.

- This decomposes each term $\zeta'_{mp,7}(0; C_+)$ into a finite sum of derivatives of Shintani zeta functions, which we compute as a finite sum of values $G_{7,2}(x_i; \bar{\omega}_i)$, where the x_i and $\bar{\omega}_i$ are given in terms of the parameters of the bases, and all satisfy $|x_i|_7 > ||\bar{\omega}_i||_7$.

- This means we can compute each of these terms in \mathbb{Q}_7 using our “large x” expansion

$$G_{7,2}(x; \bar{\omega}) = -\frac{1}{2}B_{2,2}(x; \bar{\omega}) \log_7 x + \frac{3}{4\omega_1\omega_2} x^2 + B_{2,1}(0; \bar{\omega}) x$$

$$+ \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0; \bar{\omega})}{j(j-1)(j-2)} x^{2-j}.$$
Computation of the values $\zeta'_{S,7}(0; \sigma)$

Each $\zeta'_{S,7}(0; \sigma)$ is a finite sum of $\zeta'_{mp,7}(0; C_+)$ values over all ideal classes C_+ in a coset of a subgroup of the narrow ray class group $H_+(mp)$.

- The partial fraction algorithm produces an ordered sequence of \mathbb{Z}-bases for an ideal mc of O_F in the class C_+.

- This decomposes each term $\zeta'_{mp,7}(0; C_+)$ into a finite sum of derivatives of Shintani zeta functions, which we compute as a finite sum of values $G_{7,2}(x_i; \bar{\omega}_i)$, where the x_i and $\bar{\omega}_i$ are given in terms of the parameters of the bases, and all satisfy $|x_i|_7 > ||\bar{\omega}_i||_7$.

- This means we can compute each of these terms in \mathbb{Q}_7 using our “large x” expansion

$$G_{7,2}(x; \bar{\omega}) = -\frac{1}{2} B_{2,2}(x; \bar{\omega}) \log_7 x + \frac{3}{4 \omega_1 \omega_2} x^2 + B_{2,1}(0; \bar{\omega}) x + \sum_{j=3}^{\infty} \frac{(-1)^j B_{2,j}(0; \bar{\omega})}{j(j-1)(j-2)} x^{2-j}.$$

- We have programmed all of this in PARI routines.
Realizing the trace coefficient λ_5

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_T(0,\sigma)} \cdot \exp_7(-6\zeta_{S,7}(0, \sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^2 + 7^3 + 4 \cdot 7^4 + 7^5 + 3 \cdot 7^7 + 3 \cdot 7^8$$
$$+ 6 \cdot 7^9 + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660\ldots)_7$$

to $7^{12} \lambda_5 = c_5 + e_5 \theta_p$, which in turn yields the approximation

$$\beta/\sqrt{29} = (113016104651\ldots)_7$$

to the integer e_5.

Realizing the trace coefficient λ_5

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_T(0,\sigma)} \cdot \exp_7(-6\zeta_{S,7}(0, \sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^2 + 7^3 + 4 \cdot 7^4 + 7^5 + 3 \cdot 7^7 + 3 \cdot 7^8 + 6 \cdot 7^9 + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_7$$

to $7^{12} \lambda_5 = c_5 + e_5 \theta_p$, which in turn yields the approximation

$$\frac{\beta}{\sqrt{29}} = (113016104651...)_7$$
to the integer e_5.

- We truncate this 7-adic expansion mod 7^{12} as indicated, giving the integer $e = 3655104881$; considering the bound $2\binom{6}{5}/\sqrt{29} = 2.2283...$, we know that e_5 must be exactly one of $\{e - 2 \cdot 7^{12}, e - 7^{12}, e, e + 7^{12}\}$.
Realizing the trace coefficient λ_5

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_T(0, \sigma)} \cdot \exp_7(-6\zeta_{S,7}(0, \sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^2 + 7^3 + 4 \cdot 7^4 + 7^5 + 3 \cdot 7^7 + 3 \cdot 7^8$$

$$+ 6 \cdot 7^9 + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_7$$

to $7^{12} \lambda_5 = c_5 + e_5 \theta_p$, which in turn yields the approximation

$$\beta/\sqrt{29} = (113016104651...)_7$$

to the integer e_5.

- We truncate this 7-adic expansion mod 7^{12} as indicated, giving the integer $e = 3655104881$; considering the bound $2(6)_5/\sqrt{29} = 2.2283...$, we know that e_5 must be exactly one of $\{e - 2 \cdot 7^{12}, e - 7^{12}, e, e + 7^{12}\}$.

- Exactly one of these choices for e_5 should be such that $\beta - e_5 \theta_p$ is recognizable as an integer c_5 satisfying the bound $|c_5| \leq (6)_5(1 + 1/\sqrt{29}) \cdot 7^{12}$.
Realizing the trace coefficient λ_5

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^{6\zeta_T(0,\sigma)} \cdot \exp_7(-6\zeta_S,7(0,\sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^2 + 7^3 + 4 \cdot 7^4 + 7^5 + 3 \cdot 7^7 + 3 \cdot 7^8$$

$$+ 6 \cdot 7^9 + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660...)_7$$

to $7^{12} \lambda_5 = c_5 + e_5 \theta_p$, which in turn yields the approximation

$$\beta/\sqrt{29} = (113016104651...)_7$$

to the integer e_5.

- We truncate this 7-adic expansion mod 7^{12} as indicated, giving the integer $e = 3655104881$; considering the bound $2\binom{6}{5}/\sqrt{29} = 2.2283...$, we know that e_5 must be exactly one of $\{e - 2 \cdot 7^{12}, e - 7^{12}, e, e + 7^{12}\}$.

- Exactly one of these choices for e_5 should be such that $\beta - e_5 \theta_p$ is recognizable as an integer c_5 satisfying the bound $|c_5| \leq \binom{6}{5}(1 + 1/\sqrt{29}) \cdot 7^{12}$.

- Beyond the 7^{12}s digit, such an integer must have 7-adic digits either all zeros or all sixes.
Realizing the trace coefficient λ_5

By this method we compute the 7-adic approximation

$$\beta = 7^{12} \cdot \sum_{\sigma \in G} 7^6 \zeta_T(0, \sigma) \cdot \exp_7(-6\zeta_{S,7}(0, \sigma))$$

$$= 1 + 3 \cdot 7 + 3 \cdot 7^2 + 7^3 + 4 \cdot 7^4 + 7^5 + 3 \cdot 7^7 + 3 \cdot 7^8 + 6 \cdot 7^9 + 6 \cdot 7^{10} + 0 \cdot 7^{11} + O(7^{12}) = (133141033660\ldots)_7$$

to $7^{12} \lambda_5 = c_5 + e_5 \theta_p$, which in turn yields the approximation

$$\beta/\sqrt{29} = (113016104651\ldots)_7$$
to the integer e_5.

- We truncate this 7-adic expansion mod 7^{12} as indicated, giving the integer $e = 3655104881$; considering the bound $2(6)^5/\sqrt{29} = 2.2283\ldots$, we know that e_5 must be exactly one of $\{e - 2 \cdot 7^{12}, e - 7^{12}, e, e + 7^{12}\}$.

- Exactly one of these choices for e_5 should be such that $\beta - e_5 \theta_p$ is recognizable as an integer c_5 satisfying the bound $|c_5| \leq (6)^5 (1 + 1/\sqrt{29}) \cdot 7^{12}$.

- Beyond the 7^{12}'s digit, such an integer must have 7-adic digits either all zeros or all sixes.

- We find that $e_5 = e - 7^{12} = -10186182320$ and $c_5 = -849169895$.

Paul Thomas Young (College of Charleston)
Explicit computation of Gross-Stark units over real quadratic fields
The Gross-Stark unit α given explicitly

The same method determines the other coefficients λ_i, which are also symmetric functions of the $\sigma(\alpha)$. The minimal polynomial satisfied by the Gross-Stark unit α over F is

$$y^6 + \frac{849169895 + 10186182320\theta}{7^{12}} y^5 + \frac{46850752816 + 989316304\theta}{7^{12}} y^4$$

$$\quad + \frac{1168907600 + 18302965248\theta}{7^{12}} y^3 + \frac{46850752816 + 989316304\theta}{7^{12}} y^2$$

$$\quad + \frac{849169895 + 10186182320\theta}{7^{12}} y + 1$$

where $\theta = (1 + \sqrt{29})/2$ is a root of the polynomial $x^2 - x - 7$ such that $\{1, \theta\}$ is a basis for \mathcal{O}_F over \mathbb{Z}. We verified this numerically to sixty-seven 7-adic digits.
The Gross-Stark unit α given explicitly

The same method determines the other coefficients λ_i, which are also symmetric functions of the $\sigma(\alpha)$. The minimal polynomial satisfied by the Gross-Stark unit α over F is

$$
y^6 + \frac{849169895 + 10186182320\theta}{7^{12}} y^5 + \frac{46850752816 + 989316304\theta}{7^{12}} y^4 \\
+ \frac{1168907600 + 18302965248\theta}{7^{12}} y^3 + \frac{46850752816 + 989316304\theta}{7^{12}} y^2 \\
+ \frac{849169895 + 10186182320\theta}{7^{12}} y + 1
$$

where $\theta = (1 + \sqrt{29})/2$ is a root of the polynomial $x^2 - x - 7$ such that $\{1, \theta\}$ is a basis for O_F over \mathbb{Z}. We verified this numerically to sixty-seven 7-adic digits.

• We verify computationally that α is indeed a square in K and that $K = F(\alpha)$ is in fact the totally complex extension originally specified.
The Gross-Stark unit α given explicitly

The same method determines the other coefficients λ_i, which are also symmetric functions of the $\sigma(\alpha)$. The minimal polynomial satisfied by the Gross-Stark unit α over F is

$$y^6 + \frac{849169895 + 10186182320\theta}{7^{12}} y^5 + \frac{46850752816 + 989316304\theta}{7^{12}} y^4$$
$$+ \frac{1168907600 + 18302965248\theta}{7^{12}} y^3 + \frac{46850752816 + 989316304\theta}{7^{12}} y^2$$
$$+ \frac{849169895 + 10186182320\theta}{7^{12}} y + 1$$

where $\theta = (1 + \sqrt{29})/2$ is a root of the polynomial $x^2 - x - 7$ such that $\{1, \theta\}$ is a basis for \mathcal{O}_F over \mathbb{Z}. We verified this numerically to sixty-seven 7-adic digits.

- We verify computationally that α is indeed a square in K and that $K = F(\alpha)$ is in fact the totally complex extension originally specified.

- In the spirit of Hilbert’s Twelfth Problem, we have given a 7-adic analytic construction of a specific totally complex abelian extension K of F, using only information from F.
Problems for the next century

So we can calculate the Gross-Stark units α attached to relative abelian totally complex extensions of real quadratic fields; now what?

Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = p$. We found some new relations in the course of this work; for example, for each class $C^+ \in H^+(mp)$ we have $\zeta'(mp)_p(0, [\nu] + C^+)$, where $\nu := N(mp) - 1$ and $[\nu]$ denotes the narrow class modulo mp to which the principal ideal (ν) belongs; are there others? Can we exploit them?

Can we use our explicit analytic construction of the Gross-Stark units to suggest an algebraic description of them? For example, in the case where the base field is $F = \mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.

Can a more constructive independent proof of Darmon-Dasgupta-Pollack theorem be given?

Extend the algorithm to higher-degree totally real base fields F, using higher p-adic multiple log gamma functions we have developed. (note: the Gross-Stark conjecture is only known conditionally in the general case.)
Problems for the next century

So we can calculate the Gross-Stark units α attached to relative abelian totally complex extensions of real quadratic fields; now what?

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = \overline{p}$, for example.

We found some new relations in the course of this work; for example, for each class $C \in H^+(mp)$ we have $\zeta'_{mp}(0, [\nu] + C) = \zeta'_{mp}(0, C)$, where $\nu := N(mp) - 1$ and $[\nu]$ denotes the narrow class modulo mp to which the principal ideal (ν) belongs; are there others? Can we exploit them?

Can we use our explicit analytic construction of the Gross-Stark units to suggest an algebraic description of them? For example, in the case where the base field is $F = \mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.

Can a more constructive independent proof of Darmon-Dasgupta-Pollack theorem be given?

Extend the algorithm to higher-degree totally real base fields F, using higher p-adic multiple log gamma functions we have developed. (note: the Gross-Stark conjecture is only known conditionally in the general case)
Problems for the next century

So we can calculate the Gross-Stark units α attached to relative abelian totally complex extensions of real quadratic fields; now what?

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = \overline{p} p$, for example.

- We found some new relations in the course of this work; for example, for each class $C_+ \in H_+(\mathfrak{m} p)$ we have $\zeta_{\mathfrak{m} p, p}(0, [\nu]_+ C_+) = \zeta_{\mathfrak{m} p, p}'(0, C_+)$, where $\nu := N(\mathfrak{m} p) - 1$ and $[\nu]_+$ denotes the narrow class modulo $\mathfrak{m} p$ to which the principal ideal (ν) belongs; are there others? Can we exploit them?

Can we use our explicit analytic construction of the Gross-Stark units to suggest an algebraic description of them? For example, in the case where the base field is \mathbb{Q} the Gross-Stark units are roots of unity or sums thereof.

Can a more constructive independent proof of Darmon-Dasgupta-Pollack theorem be given?

Extend the algorithm to higher-degree totally real base fields, using higher p-adic multiple log gamma functions we have developed. (note: the Gross-Stark conjecture is only known conditionally in the general case.)
Problems for the next century

So we can calculate the Gross-Stark units α attached to relative abelian totally complex extensions of real quadratic fields; now what?

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = \overline{p}p$, for example.

- We found some new relations in the course of this work; for example, for each class $C_+ \in H_+(mp)$ we have $\zeta'_{mp,p}(0,[\nu]+C_+) = \zeta'_{mp,p}(0,C_+)$, where $\nu := N(mp) - 1$ and $[\nu]_+$ denotes the narrow class modulo mp to which the principal ideal (ν) belongs; are there others? Can we exploit them?

- Can we use our explicit analytic construction of the Gross-Stark units to suggest an algebraic description of them? For example, in the case where the base field is $F = \mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.
Problems for the next century

So we can calculate the Gross-Stark units α attached to relative abelian totally complex extensions of real quadratic fields; now what?

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = \mathfrak{p}\mathfrak{p}$, for example.

- We found some new relations in the course of this work; for example, for each class $C_+ \in H_+(\mathfrak{m}\mathfrak{p})$ we have $\zeta_{\mathfrak{m}\mathfrak{p},p}(0, [\nu]_+ C_+) = \zeta_{\mathfrak{m}\mathfrak{p},p}(0, C_+)$, where $\nu := N(\mathfrak{m}\mathfrak{p}) - 1$ and $[\nu]_+$ denotes the narrow class modulo $\mathfrak{m}\mathfrak{p}$ to which the principal ideal (ν) belongs; are there others? Can we exploit them?

- Can we use our explicit analytic construction of the Gross-Stark units to suggest an algebraic description of them? For example, in the case where the base field is $F = \mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.

- Can a more constructive independent proof of Darmon-Dasgupta-Pollack theorem be given?
Problems for the next century

So we can calculate the Gross-Stark units α attached to relative abelian totally complex extensions of real quadratic fields; now what?

- Improve the implementation in PARI; find more efficient ways to choose the prime $(p) = \mathfrak{p}\overline{\mathfrak{p}}$, for example.
- We found some new relations in the course of this work; for example, for each class $C_+ \in H_+ (\mathfrak{m}\mathfrak{p})$ we have $\zeta'_{\mathfrak{m}\mathfrak{p}, p}(0, [\nu]_+ C_+) = \zeta'_{\mathfrak{m}\mathfrak{p}, p}(0, C_+)$, where $\nu := N(\mathfrak{m}\mathfrak{p}) - 1$ and $[\nu]_+$ denotes the narrow class modulo $\mathfrak{m}\mathfrak{p}$ to which the principal ideal (ν) belongs; are there others? Can we exploit them?
- Can we use our explicit analytic construction of the Gross-Stark units to suggest an algebraic description of them? For example, in the case where the base field is $F = \mathbb{Q}$ the Gross-Stark units are roots of unity or sums thereof.
- Can a more constructive independent proof of Darmon-Dasgupta-Pollack theorem be given?
- Extend the algorithm to higher-degree totally real base fields F, using higher p-adic multiple log gamma functions we have developed. (note: the Gross-Stark conjecture is only known conditionally in the general case)
Thanks!
Thanks for the opportunity to speak!
Thanks for the opportunity to speak!

Preprints may be found at

http://youngp.people.cofc.edu/
Thanks!

- Thanks for the opportunity to speak!
- Preprints may be found at

 http://youngp.people.cofc.edu/

- Video abstract “On p-adic multiple zeta and log gamma functions” may be found at

 http://www.youtube.com/watch?v=I9Bv_CycEd8
 or

 http://www.youtube.com/user/JournalNumberTheory
Thanks for the opportunity to speak!

Preprints may be found at

http://youngp.people.cofc.edu/

Video abstract “On p-adic multiple zeta and log gamma functions” may be found at

http://www.youtube.com/watch?v=I9Bv_CycEd8

or

http://www.youtube.com/user/JournalNumberTheory

Video abstract “Explicit computation of Gross-Stark units over real quadratic fields” may be found at

http://www.youtube.com/watch?v=8h1-GW-sTNc