Differential descent obstructions

Alessandro Rezende de Macedo amacedo@math.utexas.com

University of Texas at Austin

Notations

Some stuff we will need......

- *k* is a field of characteristic $p \ge 0$.
- K is a function field in one variable over k.
- We fix a separating element *t* of *K*/*k* and we will consider the derivation

$$\delta = d/dt : K \to K.$$

- Ω_K is the set of places of K and S is a finite subset of Ω_K of "bad places".
- for $v \in \Omega_K$, we consider the completion K_v and its ring of integers \mathcal{O}_v .
- $\mathcal{O}_S = \{x \in K : v(x) \ge 0, \text{ for all } v \notin S\}$ is the set of *S*-integers of *K*.

Main Question

We consider an affine variety X over K.

- K[X] is the coordinate ring of X.
- We will consider adelic points

$$(x_{\nu}) \in \prod_{\nu \notin S} X(\mathcal{O}_{\nu}) \times \prod_{\nu \in S} X(K_{\nu}).$$

Main question

Under what conditions can we guarantee that

$$(x_v) \in X(\mathcal{O}_S)$$

that is, (x_v) will be global?

Our approach : descent obstructions.....

Motivation 1 : Artin-Schreier obstructions

- p > 0 and *s* is a power of *p*. The *s*-Artin-Schreier operator $\Phi_s(x) = x^s x$.
- The exact sequence 0 → F_s → G_a ^{x^s-x}→ G_a → 0 of fppf (or étale) sheaves on Spec K[X] and on Spec K gives rise to group isomorphisms

$$H^1(\operatorname{Spec} K[X], \mathbf{F}_a) \cong \frac{K[X]}{\Phi_s(K[X])} \quad \text{and} \quad H^1(\operatorname{Spec} K, \mathbf{F}_s) \cong \frac{K}{\Phi_s(K)}.$$

Definition

An *s*-Artin-Schreier torsor over X is the image of an element of $H^1(\text{Spec } K[X], \mathbf{F}_s)$ under

$$H^1(\operatorname{Spec} K[X], \mathbf{F}_s) \longrightarrow H^1(X, \mathbf{F}_s).$$

Theorem (D. Harari and J. F. Voloch, 2013)

If (x_v) is unobstructed by all s-Artin-Schreier torsors over X, for all s, then (x_v) is global.

Motivation 2 : Additive differential obstructions

The derivation $\delta = d/dt$ on K is additive....

Define formal "cohomology groups"

$$H^1(K,\delta) := rac{K}{\delta(K)}$$
 and $H^1(K_v,\delta) := rac{K_v}{\delta(K_v)}$.

Definition

An additive differential torsor over X is given by a differential equation

$$\delta(z)=F, \quad F\in K[X].$$

An adelic point (x_v) is unobstructed by $F \in K[X]$ if there exist $(z_v) \in K_v$ and $c \in K$ such that

$$\delta(z_v) = F(x_v) + c$$
, for all $v \in \Omega_K$.

Theorem (J. F. Voloch, 2014)

If (x_v) is unobstructed by all additive differential torsors over X, then (x_v) is global.

Formalizing differential descent obstructions

- A differential scheme is a scheme X together with a global vector field $D \in Der_k(X)$.
- K{X} is the ring of differential regular functions on X. (Spec K{X}, δ) is a differential scheme.
- A morphism $(X, D) \to (X', D')$ of differential schemes is a morphism of schemes $X \to X'$ such that the sheaf homomorphism $\mathcal{O}_{X'} \to \mathcal{O}_X$ is differential.
- A differential fppf cover of (X, D) is a family $\{(X_i, D_i) \rightarrow (X, D)\}$ such that the cover $\{X_i \rightarrow X\}$ is fppf. This defines a differential fppf topology.

Theorem

The exact sequence $0 \longrightarrow \mathbf{G}_a^{\delta} \longrightarrow \mathbf{G}_a \xrightarrow{\delta} \mathbf{G}_a \longrightarrow 0$ of differential fppf sheaves on Spec $K\{X\}$ and on Spec K gives rise to group isomorphisms

$$H^1(\operatorname{Spec} K\{X\}, \mathbf{G}_a^{\delta}) \cong \frac{K\{X\}}{\delta(K\{X\}} \quad and \quad H^1(\operatorname{Spec} K, \mathbf{G}_a^{\delta}) \cong \frac{K}{\delta(K)}.$$

Voloch's differential torsor $\delta(z) = F$, $F \in K[X]$, *corresponds to*

 $[F] \in H^1(\operatorname{Spec} K\{X\}, \mathbf{G}_a^{\delta}).$

Multiplicative differential descent obstructions

dlog is the log derivative
$$dlog(x) = \delta(x)/x$$
.

• We also have an exact sequence $0 \longrightarrow \mathbf{G}_m^{\delta} \longrightarrow \mathbf{G}_m \xrightarrow{\text{dlog}} \mathbf{G}_a \longrightarrow 0$ of differential fppf sheaves on Spec $K\{X\}$ and on Spec K. It induces :

$$H^1(\operatorname{Spec} K, \mathbf{G}_m^{\delta}) \cong \frac{K}{\operatorname{dlog}(K^{\times})} \quad \text{and} \quad \frac{K\{X\}}{\delta(K\{X\}^{\times})} \hookrightarrow H^1(\operatorname{Spec} K\{X\}, \mathbf{G}_m^{\delta}).$$

An adelic point is unobstructed by $\delta(z)/z = F$, $F \in K[X]$, if there exist $(z_v) \in K_v^{\times}$ and $c \in K$ such that

$$\delta(z_v)/z_v = F(x_v) + c$$
, for all $v \in \Omega_K$.

Theorem

If (x_v) is unobstructed by all multiplicative differential torsors over X, then (x_v) is global.

By functoriality, it suffices to prove the result when $X = \mathbf{A}^1$

Notations Main question Artin-Schreier obstructions Additive differential obstructions Formalizing differential descent obstructions Multiplicative differential

THANK YOU ! =D