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m f is holomorphic,
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DEFINITION

A function f : H — C is a modular form of weight k for ['o(N) if

m f is holomorphic,

n f(z) = (cz + d)kf (—13) for all (28) € [o(N),

m f is holomorphic at the cusps: the orbits of P1(Q) under
Fo(N).
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INTRODUCTION

FOURIER EXPANSIONS

m Modular forms f(z) have a Fourier expansion in q = €™

m Example: The discriminant function has Fourier expansion

oo

A(z) =S 7(n)q"

n=0

where 7(n) is the Ramanujan function
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INFINITE PRODUCTS (EULERIAN EXPANSIONS)

m Holomorphic modular form of weight k € Z>¢ for ['o(N):

m Infinite product expansion for f(z):

oo

= q" H mye(m). c(m) € C.
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CONSTANT INFINITE PRODUCT EXPANSIONS

m Fourier expansion of A(z):

n>1
— g — 24q + 25292 — 1472q° + 4830q" - - -

m A(z) is a modular form of weight 12 for SLy(7Z)

m Infinite product expansion of A(z):

Az) = q[[(1—a)".
n=1
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INTRODUCTION

MORE EXAMPLES: ETA-PRODUCTS

m [ he eta-function:

n(z) = q* [[(1—a".
n=1

m Eta-products can be used to construct modular forms:

f(z) = [ [ n(dz)".

d|N
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INTRODUCTION

MORE EXAMPLES: ETA-PRODUCTS

m Example: A weight 2 cusp form for o(11).

f(z) = n(z)*n(11z)>

m Infinite product expansion:
f(2)=q [ (1 gmm
m=1

c(m)=1[2,2,...,2,4,2,2,...,2,4,2,2,...]
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Ea(z) =1+240) o3(n)q"
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INTRODUCTION

A THEOREM OF KOHNEN

THEOREM (KOHNEN ’05)
Suppose f(z) is a weight k meromorphic modular form on ' with
no zeros or poles on H and n € Z~»

m IfT is of finite index in SLy(7Z), then c(m) <r loglog m-log m

m IfT is a congruence subgroup of SLy(7Z), then
c(m) <¢ (loglog m)?
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INTRODUCTION

A GENERAL UPPER BOUND FOR c¢(m)

Consider a holomorphic modular form f(z) with infinite product
expansion

f(z)=q" JJ (1 — g™t
m=1
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INTRODUCTION

A GENERAL UPPER BOUND FOR c¢(m)

Consider a holomorphic modular form f(z) with infinite product
expansion

f(2) =" [~ ™).
m=1

THEOREM

Assume the set of roots of f(z) in a fundamental domain Fy is
{zi =xj+iyj}j=1,..r withyr < .. <y, and r > 1. Then,

e27rmyr

cf(m) < 32
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INTRODUCTION

A LOWER BOUND WHEN genus(Xy(N)) =0,1

Consider a holomorphic modular form f(z) with infinite product
expansion

f(2) = a" TL (@~ qm)™.
m=1

THEOREM

Assume the set of roots of f(z) in F is {zj = xj + iyj}j=1,..r with
yi <..<y,andr>1. Iff(z) is a modular form for T'o(N) such
that the genus of Xy(N) is 0 or 1,

e27rmyr
Cf(m) =Q< m3/2 ) .
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PRELIMINARIES

PRELIMINARIES

m Consider z = x + jy € H where H = {z € Cly > 0}
m Let g = ™7 and consider a (holomorphic) modular form

f(z) for o(N) with Fourier expansion

0.}

f(z) =) a(n)g"  a(h)=1

n=h

NiTYA MANI (STANFORD) JOINT WORK WITH ASRA ALI

INFINITE PRODUCT EXPONENTS FOR MODULAR FORMS



PRELIMINARIES

THE MODULAR CURVE

NITYA MANI (STANFORD) JOINT WORK WITH ASRA ALI

INFINITE PRODUCT EXPONENTS FOR MODULAR FORMS



PRELIMINARIES

THE MODULAR CURVE

m 71,2 € HUPYQ) are equivalent with respect to Mo(N):

zZ1~2 — do € ro(N), ozZ1 = 2o

NITYA MANI (STANFORD) JOINT WORK WITH ASRA ALI

INFINITE PRODUCT EXPONENTS FOR MODULAR FORMS



PRELIMINARIES

THE MODULAR CURVE

m 71,2 € HUPYQ) are equivalent with respect to Mo(N):

zZ1~2 — do € ro(N), ozZ1 = 2o

m Cp: representatives of the inequivalent cusps of [o( )

Cy = Cnv\{oo}

NiTYA MANI (STANFORD) JOINT WORK WITH ASRA ALI

INFINITE PRODUCT EXPONENTS FOR MODULAR FORMS



PRELIMINARIES

THE MODULAR CURVE

m 71,2 € HUPYQ) are equivalent with respect to Mo(N):

zZ1~2 — do € ro(N), ozZ1 = 2o

m Cp: representatives of the inequivalent cusps of [o( )

Cy = Cnv\{oo}

m Modular curve of level N:

Xo(N) = To(N)\(H UP'(Q))

NiTYA MANI (STANFORD) JOINT WORK WITH ASRA ALI

INFINITE PRODUCT EXPONENTS FOR MODULAR FORMS



PRELIMINARIES

THE MODULAR CURVE

m 71,2 € HUPYQ) are equivalent with respect to Mo(N):

zZ1~2 — do € ro(N), ozZ1 = 2o

m Cp: representatives of the inequivalent cusps of [o( )

Cy = Cnv\{oo}

m Modular curve of level N:

Xo(N) = To(N)\(H UP'(Q))

N VEN)(f(Z))Z (weighted) order of the zero of f at z on Xo(N)
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CHARACTERIZING c(m)

PREVIOUS WORK

THEOREM (BKO ’04)

For f(z) a weight k meromorphic modular form on SL>(7Z) and n a
positive integer,

> c(d)d =2kor(m) + > v ord.(f) - jm(7).

d|m TEFN

m jn(7): apply Tp, to the j-function

m Unique modular form holomorphic on H beginning as

Jm(M)=q""+>  cm(n)q"

n>1
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CHARACTERIZING c(m)

MOTIVATING WORK

THEOREM (CHOI '09)

For f(z) = > >, a(m)q™ a normalized meromorphic modular
form of weight k on I'o(N) and m € 7T,

reg
Sded)= Y (@)~ [ lz) éolinn(2)dry
d|m 2€FNUC, Fn

24h — 2k 2Nk — 24h

N1 Nal(m/N)—l— N1 O'1(m).
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CHARACTERIZING c(m)

AN ExpriciT FORMULA FOR c(m)

PROPOSITION (MOBIUS INVERSION)

am==3"u(5) | 2 AU~ [ 6l) ol (o) ey
dlm

zE€FNUCH I

2Nk—24h
D = Nfm
2k N|m
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GENERAL UPPER BOUND

A GENERAL UPPER BOUND FOR c¢(m)

Consider a holomorphic modular form f(z) with infinite product
expansion

f(2) =" [~ ™).
m=1

THEOREM

Assume the set of roots of f(z) in a fundamental domain Fy is
{zi =xj+iyj}j=1,..r withyr < .. <y, and r > 1. Then,

e27rmyr

m3/2

cr(m) <
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sENERAL UPPER BOUND

PROOF IDEA

“reg 2Nk—24h N/{/m

fo(z) - Lo(in,d(2))dxdy | + { ;Vk_l N|m

R(m)
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GENERAL UPPER BOUND

PROOF IDEA

2Nk—24h
fg(z) - SoUn,q(2))dxdy +{ 1 Nm

1 m : '

ZE]‘-NUC;'\‘I

R(m)

2Nl<<1:%4h — 0(1)
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GENERAL UPPER BOUND

PROOF IDEA

2Nk—24h
fg(z) - SoUn,q(2))dxdy +{ 1 Nm

1 m : '

ZE]‘-NUC;'\‘I

R(m)

2Nl<<lzi4h — O(].)

eZTrmyr

Ind(z) = 0

e27Tmyr

R(m) = [ fy(2) - Colin.a(2))dxdy < €2
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TIGHTER BOUNDS

A LOWER BOUND WHEN genus(Xy(N)) =0,1

Consider a holomorphic modular form f(z) with infinite product
expansion

f(z)=q" [] (1 - g™
m=1

THEOREM

Assume the set of roots of f(z) in Fy is {zj = xj + iyj}j=1,...r with
yi <..<y,andr>1. Iff(z) is a modular form for I'o(N) such
that the genus of Xy(/N) is 0 or 1,

627rmyr
Cf(m) =Q< m3/2 ) .
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TIGHTER BOUNDS
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fo(2) - o(Un.q(2))dxdy | + { é\/k—l N|m
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TIGHTER BOUNDS

PROOF IDEA

“reg

am =S u(5) | X A - |
d|m

zE€FNUC, SN

2Nk=24h  pyym
f3(2) - Eo(j dxdy | + N=1
9(2) - £o(Un,a(2))dxdy { ok N|m

R(m)

(genus(Xo(N)) =1
|
[ij(z) is holomorphic infinitely often]

[jN,d(Z) = e%r\/%yr [R(m) vanishes infinitely often] -
|

/
cr(m) = Q (m—";)}
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TIGHTER BOUNDS

A STRICTER BOUND

COROLLARY

Suppose that f(z) is a modular form with no zeros or poles on
the upper half plane and infinite product expansion

f(2) = ¢" [[ (1 — ™)™
m=1

Then,
cr(m) < logm - loglog m
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TIGHTER BOUNDS

PROOF IDEA

m Relate R(m) to weighted cusp summation:

e / " (2) - Colina(@))dxdy = 3 V(F(2))in.a(2)

FN zeCy,
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m Relate R(m) to weighted cusp summation:

e / " (2) - Colina(@))dxdy = 3 V(F(2))in.a(2)

FN zeCy,

m Bound summation when f(z) has no zeros or poles on H
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TIGHTER BOUNDS

PROOF IDEA

m Relate R(m) to weighted cusp summation:

e / " (2) - Colina(@))dxdy = 3 V(F(2))in.a(2)

FN zeCy,

m Bound summation when f(z) has no zeros or poles on H

m Upper bound using growth of o1(m)
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CONCLUSION

LIMITATIONS ON TI1GHT BOUNDS

m Q bound when the genus of Xp(/N) was 0 or 1 follows when
cusp forms of weight 2 and level N have infinitely many
vanishing Hecke eigenvalues.
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cusp forms of weight 2 and level N have infinitely many
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m Growth of c¢(m) is likely also exponential for higher genus
modular curves
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CONCLUSION

LIMITATIONS ON TI1GHT BOUNDS

m Q bound when the genus of Xp(/N) was 0 or 1 follows when
cusp forms of weight 2 and level N have infinitely many
vanishing Hecke eigenvalues.

m Growth of c¢(m) is likely also exponential for higher genus
modular curves

m R(m) cancels with summation in cases where c(m) is
bounded, like n-quotients
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CONCLUSION

SUMMARY

m Gave an exponential upper bound on the infinite product
coefficients c(m) of a holomorphic modular form f(z)
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CONCLUSION

SUMMARY

m Gave an exponential upper bound on the infinite product
coefficients c(m) of a holomorphic modular form f(z)

m Showed this bound on ¢(m) was also a lower bound in the

case that f(z) had at least one zero in H and the genus of
Xo(N) was 0 or 1
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CONCLUSION

SUMMARY

m Gave an exponential upper bound on the infinite product
coefficients c(m) of a holomorphic modular form f(z)

m Showed this bound on ¢(m) was also a lower bound in the
case that f(z) had at least one zero in H and the genus of
Xo(N) was 0 or 1

m Found the bound to be consistent with cases where the
growth of ¢(m) was slow
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CONCLUSION
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