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Modular Forms for Γ0(N)

Definition

The congruence subgroup Γ0(N) ⊆ SL2(Z) is

Γ0(N) :=

{(
a b
c d

)
≡

(
∗ ∗
0 ∗

)
(mod N)

}
.

Definition

A function f : H → C is a modular form of weight k for Γ0(N) if

f is holomorphic,

f (z) = (cz + d)−k f
(
az+b
cz+d

)
for all

(
a b
c d

)
∈ Γ0(N),

f is holomorphic at the cusps: the orbits of P1(Q) under
Γ0(N).
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Fourier Expansions

Modular forms f (z) have a Fourier expansion in q = e2πiz

Example: The discriminant function has Fourier expansion

∆(z) =
∞∑
n=0

τ(n)qn

where τ(n) is the Ramanujan function
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Infinite Products (Eulerian Expansions)

Holomorphic modular form of weight k ∈ Z≥0 for Γ0(N):

f (z) =
∞∑
n=h

a(n)qn a(h) = 1

Infinite product expansion for f (z):

f (z) = qh
∞∏

m=1

(1− qm)c(m); c(m) ∈ C.
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Constant Infinite Product Expansions

Fourier expansion of ∆(z):

∆(z) =
∑
n≥1

τ(n)qn

= q − 24q + 252q2 − 1472q3 + 4830q4 · · ·

∆(z) is a modular form of weight 12 for SL2(Z)
Infinite product expansion of ∆(z):

∆(z) = q
∞∏
n=1

(1− qn)24.
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More Examples: Eta-products

The eta-function:

η(z) = q1/24
∞∏
n=1

(1− qn).

Eta-products can be used to construct modular forms:

f (z) =
∏
d |N

η(dz)rd .
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More Examples: Eta-products

Example: A weight 2 cusp form for Γ0(11).

f (z) = η(z)2η(11z)2

Infinite product expansion:

f (z) = q
∞∏

m=1

(1− qm)c(m)

c(m) = [2, 2, . . . , 2, 4, 2, 2, . . . , 2, 4, 2, 2, . . . ]
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c(m) isn’t always pretty

The weight 4 normalized Eisenstein series:

E4(z) = 1 + 240
∞∑
n=1

σ3(n)q
n

= (1− q)−240(1− q2)26760(1− q3)−4096240 . . .

Remark: Although these exponents may not look nice, they
are examples of the theory of Borcherds products.
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A Theorem of Kohnen

Theorem (Kohnen ’05)

Suppose f (z) is a weight k meromorphic modular form on Γ with
no zeros or poles on H and n ∈ Z>2

If Γ is of finite index in SL2(Z), then c(m) ≪f log logm · logm
If Γ is a congruence subgroup of SL2(Z), then
c(m) ≪f (log logm)2
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A General Upper Bound for c(m)

Consider a holomorphic modular form f (z) with infinite product
expansion

f (z) = qh
∞∏

m=1

(1− qm)cf (m).

Theorem

Assume the set of roots of f (z) in a fundamental domain FN is
{zj = xj + iyj}j=1,...,r with y1 ≤ ... ≤ yr and r ≥ 1. Then,

cf (m) ≪ e2πmyr

m3/2
.

Nitya Mani (Stanford) Joint work with Asra Ali

Infinite Product Exponents for Modular Forms



Introduction Preliminaries Characterizing c(m) General Upper Bound Tighter Bounds Conclusion

A General Upper Bound for c(m)

Consider a holomorphic modular form f (z) with infinite product
expansion

f (z) = qh
∞∏

m=1

(1− qm)cf (m).

Theorem

Assume the set of roots of f (z) in a fundamental domain FN is
{zj = xj + iyj}j=1,...,r with y1 ≤ ... ≤ yr and r ≥ 1. Then,

cf (m) ≪ e2πmyr

m3/2
.

Nitya Mani (Stanford) Joint work with Asra Ali

Infinite Product Exponents for Modular Forms



Introduction Preliminaries Characterizing c(m) General Upper Bound Tighter Bounds Conclusion

A Lower Bound when genus(X0(N)) = 0, 1

Consider a holomorphic modular form f (z) with infinite product
expansion

f (z) = qh
∞∏

m=1

(1− qm)cf (m).

Theorem

Assume the set of roots of f (z) in FN is {zj = xj + iyj}j=1,...,r with
y1 ≤ ... ≤ yr and r ≥ 1. If f (z) is a modular form for Γ0(N) such
that the genus of X0(N) is 0 or 1,

cf (m) = Ω

(
e2πmyr

m3/2

)
.
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Preliminaries

Consider z = x + iy ∈ H where H = {z ∈ C|y > 0}
Let q = e2πiz and consider a (holomorphic) modular form
f (z) for Γ0(N) with Fourier expansion

f (z) =
∞∑
n=h

a(n)qn a(h) = 1
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The Modular Curve

z1, z2 ∈ H ∪ P1(Q) are equivalent with respect to Γ0(N):

z1 ∼ z2 =⇒ ∃σ ∈ Γ0(N), σz1 = z2

CN : representatives of the inequivalent cusps of Γ0(N)

C∗
N = CN\{∞}

Modular curve of level N:

X0(N) = Γ0(N)\(H ∪ P1(Q))

ν
(N)
z (f (z)): (weighted) order of the zero of f at z on X0(N)
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Previous Work

Theorem (BKO ’04)

For f (z) a weight k meromorphic modular form on SL2(Z) and n a
positive integer,∑

d |m

c(d)d = 2kσ1(m) +
∑
τ∈FN

ν(1)τ ordτ (f ) · jm(τ).

jm(τ): apply Tm to the j-function

Unique modular form holomorphic on H beginning as

jm(τ) = q−m +
∑
n≥1

cm(n)q
n
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Motivating Work

Theorem (Choi ’09)

For f (z) =
∑∞

m=h a(m)qm a normalized meromorphic modular
form of weight k on Γ0(N) and m ∈ Z+,∑
d |m

dc(d) =
∑

z∈FN∪C∗
N

ν
(N)
z (f )jN,m(z)−

∫ reg

FN

fθ(z) · ξ0(jN,m(z))dxdy

+
24h − 2k

N − 1
Nσ1(m/N) +

2Nk − 24h

N − 1
σ1(m).
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An Explicit Formula for c(m)

Proposition (Möbius Inversion)

cf (m) =
1

m

∑
d |m

µ
(m
d

) ∑
z∈FN∪C∗

N

ν
(N)
z (f )jN,d(z)−

∫ reg

FN

fθ(z) · ξ0(jN,d(z))dxdy



+

{
2Nk−24h

N−1 N̸ |m
2k N |m
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A General Upper Bound for c(m)

Consider a holomorphic modular form f (z) with infinite product
expansion

f (z) = qh
∞∏

m=1

(1− qm)cf (m).

Theorem

Assume the set of roots of f (z) in a fundamental domain FN is
{zj = xj + iyj}j=1,...,r with y1 ≤ ... ≤ yr and r ≥ 1. Then,

cf (m) ≪ e2πmyr

m3/2
.

Nitya Mani (Stanford) Joint work with Asra Ali

Infinite Product Exponents for Modular Forms



Introduction Preliminaries Characterizing c(m) General Upper Bound Tighter Bounds Conclusion

Proof Idea

cf (m) =
1

m

∑
d |m

µ
(m
d

)


∑
z∈FN∪C∗

N

ν
(N)
z (f )jN,d(z)−

∫ reg

FN

fθ(z) · ξ0(jN,d(z))dxdy︸ ︷︷ ︸
R(m)

+

{
2Nk−24h

N−1 N̸ |m
2k N |m

2Nk−24h
N−1 = O(1)

jN,d(z) ≍ e2πmyr√
m

R(m) =
∫ reg
FN

fθ(z) · ξ0(jN,d(z))dxdy ≪ e2πmyr√
m
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A Lower Bound when genus(X0(N)) = 0, 1

Consider a holomorphic modular form f (z) with infinite product
expansion

f (z) = qh
∞∏

m=1

(1− qm)cf (m).

Theorem

Assume the set of roots of f (z) in FN is {zj = xj + iyj}j=1,...,r with
y1 ≤ ... ≤ yr and r ≥ 1. If f (z) is a modular form for Γ0(N) such
that the genus of X0(N) is 0 or 1,

cf (m) = Ω

(
e2πmyr

m3/2

)
.
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A Stricter Bound

Corollary

Suppose that f (z) is a modular form with no zeros or poles on
the upper half plane and infinite product expansion

f (z) = qh
∞∏

m=1

(1− qm)cf (m)

Then,
cf (m) ≪ logm · log logm
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Proof Idea

Relate R(m) to weighted cusp summation:

fθ(z)d +

∫ reg

FN

fθ(z) · ξ0(jN,d(z))dxdy =
∑
z∈C∗

N

ν
(N)
z (f (z))jN,d(z)

Bound summation when f (z) has no zeros or poles on H
Upper bound using growth of σ1(m)
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Limitations on Tight Bounds

Ω bound when the genus of X0(N) was 0 or 1 follows when
cusp forms of weight 2 and level N have infinitely many
vanishing Hecke eigenvalues.

Growth of c(m) is likely also exponential for higher genus
modular curves

R(m) cancels with summation in cases where c(m) is
bounded, like η-quotients
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Summary

Gave an exponential upper bound on the infinite product
coefficients c(m) of a holomorphic modular form f (z)

Showed this bound on c(m) was also a lower bound in the
case that f (z) had at least one zero in H and the genus of
X0(N) was 0 or 1

Found the bound to be consistent with cases where the
growth of c(m) was slow
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