Average Liar Counts for Degree 2 Frobenius Pseudoprimes

Andrew Fiori and Andrew Shallue

University of Calgary – Illinois Wesleyan University

West Coast Number Theory 2016
Erdős, Pomerance, “On the number of false witnesses for a composite number” (1986) proved that

\[y^{15/23} < \frac{1}{y} \sum_{n \leq y} F(n) \leq y \cdot \exp \left(\frac{-(1 + o(1)) \log y \log \log \log y}{\log \log y} \right) \]

where the sum is over \(n \) composite, and \(F(n) \) is the count of Fermat liars for \(n \).

We have proven a similar result for degree 2 Frobenius pseudoprimes.

Headline result: Grantham challenge pseudoprimes exist “on average”
Why study pseudoprimes?

1. Primality tests based on necessary conditions are still used in practice.

2. Pseudoprimes exhibit fascinating divisibility properties.

3. Prize money!
Definitions

Composite n is a **2-Fermat pseudoprime** if $2^{n-1} \equiv 1 \pmod{n}$
First example: 341.

Lucas pseudoprime: let P, Q be integers, $\Delta = P^2 - 4Q$ (discriminant), α, β the roots of $x^2 - Px + Q$. The Lucas U sequence is defined by

$$U(n) = \frac{\alpha^n - \beta^n}{\alpha - \beta}.$$

Let $\epsilon(n) = (\Delta \mid n)$.

Composite n is a (P, Q)-LucasU pseudoprime if $n \mid U(n - \epsilon(n))$.
First $(1, -1)$-Lucas pseudoprime: 323
Definition (Grantham)

Let $f(x) \in \mathbb{Z}[x]$ be a degree 2 monic polynomial with discriminant Δ. Suppose that all the following conditions hold for a composite n.

1. (Integer Divisibility) We have $\gcd(n, f(0)\Delta) = 1$.

2. (Factorization) Let $F_1(x) = \gcd(x^n - x, f(x))$, $f_1(x) = f(x)/F_1(x)$, $F_2(x) = \gcd(x^{n^2} - x, f_1(x))$, and $f_2(x) = f_1(x)/F_2(x)$. All these polynomials exist and $f_2(x) = 1$.

3. (Frobenius) We have $F_2(x) \mid F_2(x^n)$.

4. (Jacobi) Have $(-1)^S = (\Delta \mid n)$, where $S = \deg(F_2(x))/2$.

In this case we call n a degree 2 Frobenius pseudoprime with respect to $f(x)$, and we call $f(x)$ a degree 2 Frobenius liar with respect to n.
Connections

Theorem (Grantham)

If \(a, b \) are integers, \(f(x) = (x - a)(x - b) \), and \(n \) is a Frobenius pseudoprime with respect to \(f \), then \(n \) is a Fermat pseudoprime to both \(a \) and \(b \).

Theorem (Grantham)

If \(f(x) = x^2 - Px + Q \in \mathbb{Z}[x] \) and \(n \) is a Frobenius pseudoprime with respect to \(f(x) \), then \(n \) is a \((P, Q)\)-LucasU pseudoprime.

Theorem (Grantham)

If \(n \) is a Frobenius pseudoprime with respect to \(f(x) \), then \(n \) is a Fermat pseudoprime to the base \(f(0) \).
Motivation

PSW 620 challenge pseudoprime: composite n such that $n = \pm 2 \mod 5$ is a base 2 Fermat pseudoprime and a $(1, -1)$-LucasU pseudoprime (i.e. a Fibonacci pseudoprime).

Baillie-PSW pseudoprime: composite n such that n is a base-2 strong pseudoprime and a strong (P, Q)-Lucas pseudoprime where (P, Q) chosen in a certain way to ensure symbol is -1.

Grantham 6.20 challenge pseudoprime: composite n such that $n = \pm 2 \mod 5$ and a Frobenius pseudoprime with respect to $x^2 + 5x + 5$.
Notation

Let $L_2(n)$ be the set of degree 2 Frobenius liars for n.

Let $L_2^+(n)$ be subset of liars where $(\Delta | n) = +1$. Similarly $L_2^-(n)$ is the subset where $(\Delta | n) = -1$.

Let $\text{Frob}_2(y, f(x))$ be the set of degree 2 Frobenius pseudoprimes with respect to $f(x)$, up to bound y.
Results

Theorem (Fiori, S.)

For all \(\alpha \leq 23/8 \) we have

\[
y^{3-\alpha^{-1}-o(1)} < \sum_{n \leq y} L_2^+(n) \leq y^3 \cdot \exp \left(\frac{-(1 + o(1)) \log y \log \log \log \log y}{\log \log y} \right)
\]

where the sum is restricted to composite \(n \).

Theorem (Fiori, S.)

For all \(\alpha \leq 4/3 \) we have

\[
y^{3-\alpha^{-1}-o(1)} < \sum_{n \leq y} L_2^-(n) \leq y^3 \cdot \exp \left(\frac{-(1 + o(1)) \log y \log \log \log \log y}{\log \log y} \right)
\]

where the sum is restricted to composite \(n \).
Satisfying challenges on average

Since \(\sum_{n \leq y} L_2^-(n) = \sum_{a,b \leq y} \text{Frob}_2^-(y, x^2 + ax + b) \) we have

\[
\frac{1}{y^2} \sum_{a,b \leq y} \text{Frob}_2^-(y, x^2 + ax + b) \geq y^{1-\alpha^{-1} - o(1)}
\]

So if we extend Grantham’s challenge to any set \(\text{Frob}_2^-(y, f(x)) \), there are infinitely many requested pseudoprimes on average.
Upper bound strategy

Let \(\lambda_2(n) = \text{lcm}_{p|n} p^2 - 1 \).

Let \(D_k(x) \) be the set of composite \(n \leq k \) where \(k \) is the smallest integer such that \(\lambda_2(n) \mid k(n^2 - 1) \).

Lemma (Fiori, S.)

Suppose \(n \) is square-free, composite, and \(n \in D_k(x) \). Then

\[
L_2^-(n) \leq \frac{1}{k} \prod_{p|n} p^2 - 1
\]

Following Erdős, Pomerance we have

\[
\sum_{n \leq x} L_2^-(n) = \sum_k \sum_{n \in D_k(x)} L_2^-(n)
\]
Let $L(y) = \exp\left(\frac{(\log y)(\log \log \log y)}{\log \log y}\right)$.

Lemma (Fiori, S.)

For all sufficiently large y we have

$$\#\{m \leq y : \lambda_2(m) = n\} \leq y \cdot L(y)^{-1+o(1)}.$$

Proof.

Follows Pomerance, Theorem 1 from “On the distribution of pseudoprimes.”
Questions and conclusions

The correct count of degree 2 Frobenius liars over all $n \leq y$ is probably $y^3 L(y)^{-1+o(1)}$. If we restrict to -1 liars, is the count different?

In particular, can the previous lemma be improved? Perhaps on average?

The search for challenge pseudoprimes continues.