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Perfect Numbers

n is perfect if n is the sum of its proper divisors, i.e.

n =
∑
d |n
d 6=n

d

Examples:

6 = 1 + 2 + 3
28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 31 · 2 + 31 · 4 + 31 · 8

2p−1(2p − 1) = 1 + 2 + 4 + · · · + 2p−1 + (2p − 1)
(
1 + 2 + 4 + · · · + 2p−2

)
for 2p − 1 prime (i.e., a Mersenne prime).
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Polynomials Mod 2

A polynomial mod 2 is one of the form

anxn + an−1xn−1 + . . . + a1x + a0,

where ai ∈ {0,1}.
We consider the operation mod 2, i.e.,
1 + 1 = 0,0 + 1 = 1 + 0 = 1,0 + 0 = 0.
For example

x2 + 1 = x2 + 2x + 1 = (x + 1)2.
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Perfect Polynomials Mod 2

Let σ(P) be the sum of the divisors of a polynomial P in mod 2.
A polynomial is said to be perfect mod 2 if σ(P) = P.
x2 + x = x(x + 1), so

σ(x2 + x) = 1 + x + (x + 1) + x2 + x = x2 + x .

So x2 + x is perfect.

σ(x2 + 1) = 1 + (1 + x) + (1 + x2) = 1 + x + x2,

so x2 + 1 is not perfect.
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Family of perfect polynomials

Let P(x) = (x(x + 1))2n−1. We’ll show σ(P) = P.

1 + x + x2 + · · · + x2n−1 =
x2n − 1
x − 1

=
x2n

+ 1
x + 1

= (x + 1)2n−1.

1 + (1 + x) + · · · + (1 + x)2n−1 =
(1 + x)2n − 1

x
=

1 + x2n − 1
x

= x2n−1.

σ(P) = σ(x2n−1)σ((x + 1)2n−1) = (x + 1)2n−1 · x2n−1 = P.
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Weirdo Perfects

Figure: Perfect numbers not in the infinite family. Found by Canaday in 1941
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Even and Odd Perfects

We say that P is an even perfect if x(x + 1)|P and P is perfect.
We say that P is odd otherwise.

Conjecture
All perfect polynomials are EVEN.
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What did we know

Theorem (Canaday)
An odd perfect polynomial is a square.

Theorem (Gallardo-Rahavandrainy)
If A is an odd perfect polynomial, then it has at least 5 distinct
irreducible factors. Moreover, the number of irreducible factors of A,
counted with multiplicity, is at least 12.
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What did we prove

Theorem (Cengiz-Enrique-Pollack)

The number of perfect polynomials of norm ≤ x is Oε(x
1

12 +ε) for every
ε > 0.

The norm of A is 2deg A.

Theorem (Cengiz-Enrique-Pollack)
There are no odd perfect polynomials of degree ≤ 200, i.e., there are
no odd perfect polynomials of norm ≤ 2200 ≈ 1.6× 1060.

Theorem (Cengiz-Enrique-Pollack)
If A is a non-splitting perfect polynomial of degree ≤ 200, then A is one
of Canaday’s polynomials.
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Main Tool

Lemma (Fundamental lemma)

Let M be a polynomial which is not perfect, and let k ≥ 2 be a fixed
positive integer. Let x ≥ 10. Then there exists a constant Ck
depending only on k, as well as a set S depending only on M, k and x,
of cardinality bounded by xCk/ log log x , with the following property: if A is
a perfect polynomial of norm ≤ x for which
(a) M is a unitary divisor of A: i.e., A = MN with gcd(M,N) = 1, and
(b) N = A/M is k-free, i.e., Pk - N for any irreducible polynomial P,

then A has a decomposition of the form M ′N ′, where
1 M ′ is an element of S,
2 M ′ and N ′ are unitary divisors of A,
3 both factors M ′ and N ′ are perfect,
4 N ′ is k-free,
5 M is a unitary divisor of M ′.
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Algorithm

H.-W. Algorithm
Given a polynomial B and a stopping bound H, with deg B ≤ H, the
following algorithm (a) outputs only perfect polynomials A of degree
≤ H having B as a unitary divisor, and (b) outputs every such A that is
indecomposable.

1 Check if σ(B) = B. If yes, then output B and break.
2 Compute D = σ(B)/gcd (B, σ(B)).
3 If gcd (B,D) 6= 1, break.
4 Let P be an irreducible factor of D of largest degree.
5 Recursively call the algorithm with inputs BPk and stopping bound

H, for all positive integers k with deg(BPk ) ≤ H.

Note: indecomposable means A has no nontrivial factorization as a
product of two relatively prime perfect polynomials.
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Recursion

Figure: Recursion for the Algorithm
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How did we go so high?

To check odd perfects:
From the algorithm, we need only check whether P2 is a unitary
divisor for deg P ≤ 20.
Because if A is perfect. It has at least 5 prime divisors and A is a
square.

To check even perfects that are not in the infinite family:
If P(x) is perfect, then P(x + 1) is perfect.
If P is perfect x |P ⇔ (x + 1)|P.
We need only check the algorithm for x , x2, · · · x100.
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Thank you!
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