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COMMENTS ON EARLIER PROBLEMS

An interesting historical item has been supplied by John Brillhart. It was hoped that
Mordell would attend the 1970 Western Number Theory conference in Tucson, and he sub-
mitted a problem for presentation. My records are not complete as far back as that, but it
may be worth repeating, if this is in fact a repetition. It was solved by another distinguished
participant in our conferences, but before giving the solution, others may like to see if they
can find an even more general one.

70:XY (L.J. Mordell) Let p be an odd prime. Write f(z) = 22, g(z) = az?, where a is a
quadratic non-residue of p. It is trivial that if n is any integer, then either the congruence
f(z) = nor g(z) = n is solvable mod p. Find other functions with this property. Prove that,
if d is any integer, the functions f(z) = 2z + dz*, g(z) = = — 1/4dz? have this property.

76:15 (Hugh Edgar) For primes p and ¢, and h an integer, how many solutions (m,n) does
p™ — q® = 2" have? At most one? Only finitely many? Examples are 32 — 23 = 29
53 — 112 = 22; 52 — 32 = 24,

This appeared as Advanced Problem 6110* in Amer. Math. Monthly, 83(1976) 661, pro-

posed by David M. Battany, Oceanside, California, with the suggestion “at most one”. It is
also in section D9 on page 87 of UPINT.

Reese Scott, in an as-yet-to-be-published paper, “On the equation [p™ — q™| = ¢”, goes
a fair way towards settling the question. He observes that the finiteness of the number of
solutions for given (p, ¢, ¢) follows from a result of Pillai. The reference is

S. Sivasankaranarayana Pillai, On the inequality “0 < a®—bv < n”, J. Indian Math. Soc.,
19(1931) 1-11; Zbl. 1 268b.

There are also:
S.S. Pillai, On a® — b¥ = ¢, ibid. (N.S.) 2(1936) 119-122; Zbl. 14 392e.

S.S. Pillai, A correction to the paper “On A® — BY = C”, ibid. (N.S.) 2(1937) 215; Zbl.
16 348b.

!

The review of the former mentions

Aaron Herschfeld, The equation 2% — 3¥ = d, Bull. Amer. Math. Soc., 42(1936) 231-234;
Zbl. 14 8a.

which in turn refers to the earlier Pillai paper and mentions Siegel’s theorem.
Reese Scott proves the following theorems:

I: For distinct positive primes p and ¢, and for positive integer c, the equation p™ +c¢ = ¢™
has at most one solution n, m where m is a positive integer and n is a positive odd integer,
except for the five cases (p,q,¢) = (2,3,1), (3,2,5), (3,2,13), (5,2,3), (3,13,10) which each
have exactly two solutions. When n is a positive even integer, p* + ¢ = ¢™ has at most one
solution.

II: p® + ¢ = 2™ has at most one solution n,m for fixed prime p and fixed integer ¢ > 0,



except for the three cases (p,c) = (3,5), (3,13), (5,3) which each have exactly two solutions.

ITI: The equation |p™ — ¢™| = ¢, where p and g are positive primes and c is any positive
integer, has at most three solutions n,m, where n and m are positive integers. There are
Just three choices of (p, ¢,c) which give three solutions: (2,3,1), (2,5,3), (2,3,5).

IV: If ¢ > 2 and (p|g) = —1, then p™ 4+ ¢ = ¢™ has at most one solution, except for
(p’q’ C) = (27371)

85:03 (D.H. Lehmer) If ¢, is the coefficient of 2™ in (14 z 4+ £2)", show that the determinant
of the matrix

Co C1 Ck
C1 C2 Ck+1
Ck Ck41 .- Cok

is 2%,
Remark: A solution by David Cantor was included with the 1988 problems set, where it

was mentioned that Andrew Granville had also given a solution. This has appeared:
Andrew Granville, On a class of determinants, Fibonacci Quart., 27(1989) 253-256.
88:09 (Brian Conrey) Let P(z) be a polynomial with real non-negative coefficients and

P(0) # 0. Then P has no real positive zeros. Let ¢ be a complex zero of P such that | arg (|
is minimal, where —7 < arg < 7. Define

N O
A& =oe-0

where ( is the complex conjugate of ¢. Then Py(2) has real coefficients: are they all non-
negative?

Remarks: Brian Conrey & Kevin McCurley each since reported that a group at Texas Tech.
are rumored to have proved that the answer is “yes”. Paul Bateman draws our attention to

Advanced Problem 6631, Amer. Math. Monthly, 97(1990) 432, proposed by Ron Evans &
Peter Montgomery:

We say that f(2) = ag+a12+...4ax2* is a unimodal reciprocal polynomial with positive
coefficients if

0<ap=ar<ay=ar_; < Ay = ag-2<...< Qlk/2] = Q|(k+1)/2)-

(i) If 21, 23, ..., 2z, are the n-th roots of 1 and if 27 /n < t, prove that
II (z-2)
|arg z;|>t

is a unimodal reciprocal polynomial with positive coefficients. Here —7 < argz < .



(i) If 21, 22, ..., 2, are the n-th roots of —1 and if 7/n < t, prove that
I (z-2)
| arg z;|>1

is a unimodal reciprocal polynomial with positive coefficients.

88:12 (Emma Lehmer: revision of 86:12) p = ef + 1 is prime and

f-1 »
et
=) ¢
1=0

are the Gaussian periods of order e.

(1) Find constants ¢;, 0 < ¢ < e — 1, not all 1 or —1, such that

e—1
6 = D ciflitj

i=0
are units.
Fore=5, p=25nt+25n3+15n24+5n+1, [[m =n!C
Fore=6, p=144n?4+12n+1, [[m = nb.
Fore=7, p=mn%+7n%+ 21n*+49n3 + 14702 4 343n + 343.
Fore=8, p=16n*+1.

Remark. replace the original remark by: Another example for e = 5, p = 25nt — 2503 +
16512 — 95n 4 211 gives [[1,6; = 1, for p = 211 and 6; = 7; — ni41 — 1. In terms of Dickson’s
form

16p = z2 + 50u® + 50v% + 125w? with zw = v? —u? — 4uv

we have u + v = 1, w = 5. We note that for §; = 7, + c we have u + v =1, w = *1.

n p T u v ow q
0 211 1 2 -1 5 31
1 281 11 -3 4 5 37

-1 521 31 7T -6 5 29
2 881 61 -8 9 5 29
5 16361 451 -—-23 24 5 7

-5 23561 551 -—-26 27 5 41
8 99611 1201 -38 39 5 7

where ¢ is the least quintic residue.
(2) Are there primes for which []7; = n¢ for e = 7 and e = 87

Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comput.,
50(1988) 535-541.



Remarks by Gene Ward Smith (Berkeley) Consider conductors f for quintic cyclic ex-
tensions such that
f=n*+5n%+ 1502 + 25n + 25.

We may factor the above polynomial over @ ((s) to obtain
f= II  (+2+G+23).
7€Gal(Q(¢s)/Q)

If we put these conjugate values in the generic polynomial defined in my thesis “Generic
Cyclic Extensions”, we obtain

2° —10f2% = 5f(4n? + 10n + 5)z> — 5f(3n* + 15n0° + 2002 — 50)z

—  f(4n® + 30n® + 65n* — 200n% — 1257 + 125),

where f = n* + 5703 + 1502 + 250 + 25.

Modulo 5, this polynomial is (z + n2?)%. This suggests the transformation z = 5z — ne
making this substitution one gets

z® —n?zt — 2(n®+3n? + 5n 4 5)23
— (n*450° + 11n% + 150 + 5)z2 + (2% + 4n? + 100 + 10)z — 1.

What happens when we try the same technique on the proposed
f=n%4 7% + 21n* + 4903 + 14702 + 343n + 343
of problem 88:12?7 We first factor this, and find it is the product of the conjugates of

n+2+20 + 203 + (7.

Inserting this into the generic polynomial as before, we obtain a polynomial of degree 7 which
mod 7 is congruent to (z + n%)7. If we then transform by z = 7z — n3, we do not obtain
a polynomial with norm +1. Moreover, it does not seem to be possible to transform the
polynomial we do obtain into a polynomial with norm +1.

The difficulty is that we must do more than find a polynomial for the conductor which
passes through a few primes congruent to 1 mod 7. We must find primes which all have
the “Gaussian period integer translation” property, of having units which are translates of
Gaussian periods. I don’t think

n8 + 7n% + 21n? + 4903 + 14702 + 343n + 343

has this property! A list of primes congruent to 1 mod 7 with this property would seem to
be the place to start attacking this problem.

88:17 (Dick Katz via John Selfridge) Is £ + &+ & + 135 + 525 + 515+ 70 +- - - Tational, where
the numerators are the numbers of “large” digits, 5, 6, 7, 8 or 9, in the decimal representation
of 2%?



Remark: The problem is to find generalizations, to other sets of digits, since Eugene Levine
[Problem 386, Coll. Math. J., 19(1988) 448; solution, John P. Quinn, ibid. 21(1990) 151-152,
with generalizations by Levine and by Dave Ohlsen], asks readers to show that the sum is
2/9, as do Doug Bowman & Tad White in Advanced Problem 6609, Amer. Math. Monthly,
96(1989) 743. In their original submission, Bowman & White also gave the example

f(n) 20
2, on 89

n>0

where, for each n, f(n) is the sum of the Fibonacci numbers F; over those ¢ for which the i-th
digit in the base 10 representation of 2" is greater than 4. They asked for generalizations to
other sets of digits and other bases. Unfortunately their paper, “On a problem of Levine”, has
run afoul of the large Monthly backlog. They prove a theorem which solves these problems
as particular cases:

Let {rn}n>0 be a sequence of integers with r, > 1, and define a, inductively by ap = 1,
@ny1 = QnTn. Working in base b, let the b-ary expansion of a, be Zizo dn;b*. Then the
computation of a,4; is a multiplication which is usually laid out as follows:

Cn,2 Cn,1 Cn,0
dn 2 dn 1 dn ,0
X Tn

dn+1,2 dn+1,1 dn+1,0

where the ¢, ; denote carries, ¢, o = 0 for each =, and 0 < dy,; < b for all n and i. Note that
if 7, < b, the base b representation of 7, is a 1-digit number, and our ordinary elementary-
school definition of the carry is valid. If 7, > b, one multiplies as shown in the above diagram;
in other words the multiplication is distributed over the b-ary expansion of a, but not over
the expansion of r,. The resulting equation is

Tnd'n.,i + Cng = dn+1,i + bcn,i+1

for all n > 0 and ¢ > 0. Then the theorem is:

THEOREM. For any fized complex number z such that |z| < b, define g.(n) = Fi>o Cni2'.
Then
g:(n) _ 2
11.20 an+1 b -z

88:21 (Peter Montgomery) concerning the product []%,(z? + 2z cos(2j — 1)0 +1).
Remark: See problem quoted under 88:09 above.



PROBLEMS PROPOSED 89-12-17 & 20

89:01 (Bruce Reznick via Jim Propp) The function

T

=z —z%+422% - 224 5 —3254...
(1—x)(1+z)2 T —z°+4 2z 2z2% 4 3z z° +

is a rational function whose power-series expansion contains every integer as a coefficient. Is
there a rational function whose power-series expansion involves every integer as a coefficient
infinitely often?

Remark: Gerry Myerson writes: The answer is “no” ...David Cantor outlined a proof
.. .minutes after problem was presented. Alf van der Poorten . ..much the same proof .. .are
planning ...exposition ...idea is ...Skolem-Mahler-Lech theorem asserts (in effect) that if
20 @nz™ is a rational function and c is an integer then the set of all J such that a; = c is
the union of a finite (possibly empty) set and a finite number (possibly zero) of arithmetic
progressions. If a; is constant on an arithmetic progression with common difference d, and
a is a zero of the denominator of the rational function, then so is a( for some d-th root of
unity (. Now the denominator has only finitely many zeros, so there are only finitely many
d, so only finitely many arithmetic progressions, so only finitely many integers that occur
infinitely often.

89:02 (David Boyd) Are there primes p and ¢ such that 27 = 3 mod q and 27 = 3 mod p?

[The Lehmers found the solution 7 = 4700063497 = 19 x 47 X 5263229 of the congruence
2" = 3 mod n. See UPINT F10.]

89:03 (Raphael Robinson) For any positive integers r1, 73, ..., rp, let B(ry,72,...,7,) be
the largest coefficient of the polynomial (1 + z")(1+27)...(142™). Ford > n, let A(n,d)
be the minimum of B(ry,ry,...,r,) over all partitions d = r1+r2+...4 7, of d into n parts.
Show that A(n,d) < A(n,d - 1) for d > n.

89:04 (Erdés Pal) If n is an integer and 1 = a; < a3 < ... < @4(n) be the numbers relatively
prime to n, then J(n) = max(a;4;— a;) is Jacobsthal’s function. I proved 27 years ago (Math.
Scand. 10(1962) 163-170; MR 26 #3651) that for almost all n,
n
J(n) = (14 0o(1))—w(n
(n) = (14 0(1)) pYen) (n)
where w(n) is the number of distinct prime factors of n. Is it true that J(n)/w(n) is bounded
if n/$(n) is bounded, or
n
J(n) < (————-) w(n 1
(m < £ (575 ) ot M

If true, give an explicit function f(z) which satisfies (1).

Put ng =2-3....-p. I thought that every even 2t < J(nk) can be written in the form
@i41 — @i, but Lacampagne & Selfridge found a counterexample for £ = 6. Estimate the



smallest 2t < J(ng) not of the form a;41 — a;. Is it true that the number of distinct 2t of
the form a;41 — a; is greater than cJ(nk) where c is an absolute constant?

89:05 (Erdés Pal) Is it true that every interval (a,a + k), a < k? contains ck integers all of
whose prime factors are less than k? Presumably this holds for every k> with ¢ depending
on @, but in our work with Lacampagne & Selfridge we only needed it for a + k < k2. Is it
clear that in this case the number of integers in (a,a + k) all of whose prime factors are < k
tends to infinity with k7

Solved! Erdds, in an 89-12-29 letter, writes that this is in:

John B. Friedlander & Jeffery C. Lagarias, On the distribution in short intervals of integers
having no large prime factor, J. Number Theory 25(1987) 249-273; MR 88d:11084.

89:06 (L. Babai via Andy Odlyzko). Let p = ef + 1 be a prime, ¢ = e2™i/? and

n=>_¢*,

keS

where § = {g®*2:0< j < f-1},a € Z, and g a primitive root of p. [Then 7 is a classic
cyclotomic period.] How large can 7| be? [n is not necessarily real.]

(1) Can f — |n| be very small? (2) If e & f = /P, are there lower bounds on In|?

89:07 (Joel L. Brenner) Many classes C in the symmetric group S, are proved to have the
covering property, i.e., CC = A,, the alternating group, where the product CD of two
sets is the collection of products zy as z runs through C and y runs through D. For each
r> 1, take 1 < ky,...,k, and define k = 1 ki. If [3n/4| +7 -1 <k <n,n2 4r — 1,
then the class C ~ 17k} ... k! with n — k (or more) fixed points in S, is conjectured to
have the covering property. A proof is given for r = 1, 2, 3; the methods are new, as are the
results when 7 = 2, 3. Note that “4r — 1” cannot be replaced by a smaller number. If the
conjecture is true, then (asymptotically) almost all classes in A, have the covering property.
A further conjecture is that the last assertion holds for any infinite ascending series of
finasigs (= finite nonabelian simple groups).

89:08 (Peter J. Cameron, from 12th Brit. Combin. Conf.) Let ¢, n, k be positive integers
with ¢ > 1,n > 3.

(1) Show that (’;) -1= qq _—11 has no solutions.
(2) Show that (g) —1=g¢"+1 has only the solution ¢" = 64, k = 12.



89:09 (Richard McIntosh) Prove that for primes p > 5 we have

r—1 p—1
321:”‘3 = 22k‘2 mod p?
k=1 k=1

[This was claimed to be the corrected form of the congruence on the last page of the article:
A. Gardiner, Four problems on prime power divisibility, Amer. Math. Monthly, 95(1988)
926-931.]

If n is not prime, prove or disprove

3 > kMM2=2 Y k2 mod n?.
(kn)=1 (k,n)=1

For what n is 374 n)=1 k72 = 0 mod n?? E.g., n = 39 and lots more, but only one prime is
known, namely 16843.

[Brinkmann showed that

2p—1 2
(;_1> El—ng_3p3m0dp4

for primes p > 5. See Emma Lehmer, On congruences involving Bernoulli numbers and the
quotients of Fermat and Wilson, Ann. of Math.(2) 39(1938) 350-360; Zbl. 19.005.]

Remarks: (Andrew Granville) The “2” and “3” in the first equation should be interchanged.
The second equation is not the correct generalization. Here is somewhat more than the correct
generalization.

Let r be a fixed, even positive integer. If n is a positive integer such that p — 14 r for all
primes p|n, and ¢(n) > 7, then

Y KO =(r—g(n) Y b~ mod n?
1<k<n 1<k<n
(kn)=1 (km)=1

Granville gives a proof, from which it also follows that

Z k=2 = nBy(n2)-2 H(l - p?(*)=3) mod n?
1<k<n pln
(kyn)=1

so that McIntosh’s last question is equivalent to: when does n divide
2)_
B¢(n2)-2 H(l - P¢(n ) 3)?
pn

If n = p is prime this is equivalent to p|Bp—3. In general if n is squarefree then this is
equivalent to p|B,_3 or p|¢® — 1 for some g|n, for each p|n. To construct such n Peter
Montgomery takes n = pq where p, ¢ = p2 + p+ 1 are primes.



89:10 (Andrew Granville & Ladislav Skula) Define g, to be the least positive integer ¢ such
that there is an a with 1 < a < ¢ and

Bp-1 (%) — Bp—1 #0mod p

where B,,(z) is the n-th Bernoulli polynomial and By, = Bx(0).
Find a good upper bound on g,.
[T have g, < (Inp)? for all p > 5: improve this! Conjecture that Vp, g, = 2 or 3.

89:11 (Andrew Granville) Suppose that we are given an m x n (m > n) matrix M(X) with
(1,7)-th entry X®i for some non-negative integers a;; such that every n x n submatrix of
M(X) has a non-zero determinant. Suppose that M(t), where ¢ is a complex number (but
not 0 or a root of 1), has less than full rank (i.e., rank < n — 1). Prove that m < 2n.

[Note: this upper bound is independent of the a;;.]

.en

Results: (1) (Bombieri-Granville) m < e (n! + 2 times).

(2) (Granville-van der Poorten) If ¢ is not a unit (first and last coefficients of minimum
polynomial 1), then m < n3/2.

89:12 (Sun Qi) Ko Chao, J. Chinese Math. Soc., 2(1940) 205-207, found infinitely many
integer solutions of 2%y¥ = 2%. Are there solutions with 24 zy?

89:13 (Sun Qi) Are there integer solutions of w*z*y¥ = 2* with 1 < w <z < y? [See
UPINT D13.]

89:14 (Sun Qi) Has the equation 3™ — 2¢™ = 1 any integer solutions with m > 1, n > 1,
24 m, ¢ an odd prime, other than ¢ = 11, m =5, n = 2?7

89:15 (Sun Qi) Ko Chao, J. London Math. Soc., 11(1936) 218-219, gave integer solutions
of 23 + y3 + 223 = n for all n < 100, except n = 76 and n = 99. Are there solutions in these
cases?

[See UPINT D5 where it’s implied that 99 is settled. Are each of n = 148, 183, 230, 253,
356, 418, 428, 445, 482, 491, 519, 580, 671, 734, 788, 923, 931 and 967 still in doubt?]

10



89:16 (Sun Qi) Let A(s) be the number of positive integer solutions of

S 1 1
— — :]_, O<$1<...<$3 (2)
— T; Ty1...Tg

e.g., A(6) = 17 (Sun Qi & Cao Zhenfu, Acta Sci. Sichuan Univ., 5(1985) 700). For n > 3 is
A(n +1) > A(n)?

89:17 (Sun Qi) For each n > 1, let X(n) denote the number of solutions of the following
problem. Each of n integers z; > 1 is a proper divisor of T1...Ti{-1%i41...2n — 1. Li-
Shuguang has shown that X(2) = X(3) = 0 and that X(n) > 0 for n > 4. Is it true that
X(n+1)> X(n) for n > 47

89:18 (Sun Qi) If
f(z1,...,2m) € GF(p)[z1,...,2m]

and there are primitive roots aj,. .., a;, mod p such that f(ea,...,ay,) = 0 mod p, then are
there always primitive roots 81, ..., B, mod p' such that f(B1y- .., Pm) =0 mod p'? [Neither
Andrew Granville nor Gerry Myerson can understand this, so it’s evidently not properly
posed.]

89:19 (Bart Goddard) Let 0 = z; < 2 < ... < z,, be integers with ged(z,,...,2,) =1 and
letd; <dy <...< d(n) be the positive differences of the z;, with multiplicities included.

How do we choose thezzi so that the d; are “evenly spread”? I.e., let e; = dj41 — dj for
=12, .00y (g) — 1, and s and ¢ be the average values of the d; and the e;. Then minimize
a+ b+ c, where a is the number of pairs (4,7) with 4 < j and d; = dj, b is the average value
of |s — dj|, and c is the average value of |t — ¢;].

For example, if n = 5, then (0,1,2,6,9) gives s = 4.6, t = 8/9,a=1,b=24,c=16/81

and a + b 4 ¢ = 1457/405 and, for n = 6, (0,6,9, 10,17,24) gives s = 154/15, t = 23/14
a=1,b=2374/75,¢c=95/98 and a + b + ¢ = 51127/7350.

k)

89:20 (Hugh Edgar) Characterize those positive integers n for which

at+fty=afy=1 *)
is solvable in Z[(,].
Remarks. Since 1+ + (—i) = 1-1-(—i) = 1, all positive integer multiples of 4 qualify.
The equations (*) are solvable in the ring of integers of @(6), where Irr(0, X,Q) = X3 -
X?—-4X — 1. Q(0) is a cyclic cubic extension of @, and Q(0) is a subfield of @Q((;3) so
all positive integer multiples of 13 qualify. Edgar notes that Andrew Bremner, Manuscripta

Math., 65(1989) 479-487, shows that the field arising from X3 — X2 — 4X — 1 is the one and
only cyclic cubic extension of @ on which (*) have solutions.

11



89:21 (Doug Bowman) Find an asymptotic upper bound for f(n), the number of partitions
of n into parts which divide n.

[This will appear as Advanced Problem 6640 in the Nov. 1990 Monthly.]

Solution: Bateman gave proofs that
{14 0(1)} {@ = 1}lnn <lnf(n) < {1+ 0(1)}7(271) nn

where 7(n) is the number of divisors of n. The lower bound is due to Odlyzko & Erdds, and
is obtained by considering the number of partitions of n in which you take the divisor d,
1< d<mn,either0,1,2,...,o0r |n/dr(n)| times and fill out with parts 1. The upper bound
is by Bateman himself who notes that f(n) is the coefficient of z™ in

1
Hl =l +z+2 4. 42" +..)
dn - " Un

which is at most the sum of the coefficients, [Ty (5 + 1)

89:22 (Morris Newman) Let H, be the Hecke group generated by the matrices

0 1 1 2cosZ
= — q
r=(5%) o= (6T

where ¢ is an odd prime. Then H, is the free product of the cyclic group {7’} of order 2 and
the cyclic group {ST} of order q. Prove that the number of subgroups of H, of index 2¢ —1
is in fact just 2¢ — 1. [True for all primes ¢ < 41 by direct calculation.]

Solution by R.B. Howlett, Univ. of Sydney, via Gerry Myerson and John Mack.

Let G = (z,y|2? = y? = 1) where g is an odd prime. Suppose that H < G and |G : H| =
2¢ — 1. Observe that G acts transitively by left multiplication on the set C = {gH | g € G},
which has 2¢ — 1 elements. The orbits of (z) on C all have length either 1 or 2, and since [C| is
odd, at least one of these orbits has length 1. So we may choose C; € C such that zCy = Ci.

If yC, = C; then gC, = C, for all ¢ € G, since z & y together generate G. This
contradicts transitivity of G on C. So Cj lies in an orbit of (y) which has length greater than
1. Since (y) has prime order g, any non-trivial orbit of (y) must have exactly q elements.
Hence C;, Cy = yC1, C3 = y*C1, ..., Cqy = y971C, are distinct elements of C.

Let Co = {C;|i=1,2,...,q} and C{ = {C € C|C & Co}. Since Co is a (y)-orbit, its
complement C, is a union of (y)-orbits, all of which must have length 1, since any non-trivial
(y)-orbit has ¢ elements and C} has only ¢ — 1 elements. So yC = C for all C' € Cg.

Let C € C}. If zC € C}, then z(C UzC) = CUzC and y(C UzC) = CUzC, giving
g(CUzC)=CU=zC for all g € G and contradicting transitivity of G on C. So zC € Co. If
zC = C; then C = z2C = zC; = C; contradicting C € Co; so zC € {C2,C3,...,Cq}. Thus
C — zC gives a bijective correspondence between C}y and {C5,C3,...,Cq}. Let Cgi1 = zCy,
Cq+2 = 2C3, ..., Cyq_1 = zCy. Note that H = C; for some :.
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For each g € G define ¢(g) € S2,-1 (the symmetric group) by
gCi = C¢(g)(i) forall € {1,2,.. 29— 1}

Then ¢ : g — ¢(g) is a homomorphism G — S2¢-1. Furthermore,

¢(y)
¢(z)
It is easily proved that ¢(z) and ¢(y) generate the alternating group Ag,_;. Observe that

H={geG|gCi=Ci}={g€G|g(g)(s) =1}

(1,2,...,9) and (+)
(27‘1+ 1)(31Q+2)"'(q,2q_ 1)

Without assuming that G has a subgroup of index 2¢ — 1, it is trivial that (%) defines a
surjective homomorphism ¢ : G — Az,_;. For each i the group S; = {m € Agg—1 | 7(3) = 4}
is a subgroup of index 2¢ — 1 in Azg-1, and the preimages H; = ¢~1(S;) are 2¢ — 1 distinct
subgroups of G of index 2¢ — 1. Our argument above showed that an arbitrary subgroup of
G of index 2¢ — 1 must equal one of these.

89:23 (James P. Jones) Show that

(2:) =2mod n® implies that (2:> = 2 mod 2n3.

Solution: Richard McIntosh uses Kummer’s theorem and proves the following two theorems.

Theorem 1

where

Theorem 2
1

For n > 3 we have <2n—
n-—1

!
) = 1 mod n?.

[Also solved by Andrew Granville.]
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89:24 (Landon Curt Noll) Given the sequence product:

i<n

St = [Tk + 1) = p'p3? ... pE°

1=0

what is the relationship of ¢, the number of distinct prime factors, to S?
E.g. If §1, contains a twin prime, how rare isc=47

89:25 (Erdés, Lacampagne & Selfridge) For each k are there infinitely many sets of k con-
secutive numbers n + i = ip;, 1 < 4 < k with each p; prime? E.g., k = 5, 19441 = 1 X 19441,

19442 = 2 x 9721, 19443 = 3 x 6481, 19444 = 4 x 4861, 19445 = 5 x 3889. In such cases, if
p(m) denotes the least prime divisor of m, then

(34

We call a binomial coefficient (Y) exceptional if p((})) > &

Conjecture 0. (%) is the only exceptional binomial coefficient with N > k% — 1.
Conjecture 1. There are no exceptional binomial coefficients with N > 17.125k.
Conjecture 2. If () is exceptional, then p( (%)) < 17 except for p( 2)) = 19, p((%5)) = 19,
P (46764)) = 23 and p( (22834)) =29.

[We have so far found eight exceptional binomial coefficients with p( (IZ )) = 17. Conjecture 2
implies Conjecture 1.]

89:26 (Erdés Pal) Let g(k) be the smallest n such that (}) has p((})) > k. For large n
it seems obvious that g(k) > k? — in fact > any power of k, but we have only proved
g(k) > klte.

89:27 (Erdés Pal) Given n integers a; < ... < @n, how many A.P.s, a;,a; + d,a; + 2d with

distinct differences d can they contain? Erdds & Rusza gave nl*¢ explicitly, and Erdés &
Spencer proved probabilistically that you can get n3/2 and this may be best possible.
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89:28 (Andrew Granville) Define

_Jz-lz|-} z¢Z
((z))‘{ 0J ‘ez

A theorem of Franel states that for any positive integers ¢ and b

a,b)?

Jo ((az))((b2)) dz = G (*)
(An elegant proof appears in Hans Rademacher & Emil Grosswald, Dedekind Sums, Carus

Math. Monograph 16, Math. Assoc. Amer., 1972, pp-24-25 [copied, with acknowledgement,

from Edmund Landau, Vorlesungen iiber Zahlentheorie, Chelsea, zweiter Band, Satz 484,
pp. 170-171 - RKG].)

Find a similar “simple” formula for

[ (Cn(cbe))ea))((eo) do

Remark: Bruce Berndt writes that while this generalization is not in his paper, two
generalizations of (*) are Lemmas 4.2 and 7.1 in

B.C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Adv. Math.,
23(1977) 285-316.

89:29 (Mike Filaseta — from Emil Grosswald, Mar. ’88, but not originating with him) For
odd n the Legendre polynomials are divisible by z, but otherwise they are irreducible. Can
two Legendre polynomials share the same non-trivial factor? Similar question for Hermite
polynomials.

89:30 (Gene Smith) Let

i 5
R = H D; €
p:‘<n,eg21

be a product of all primes less than a bound n, each raised to an exponent k£ such that
pl*l < n, so that R is the least such product with R > 1. Write R = P/Q in reduced form,
and f(n) = P - Q.

(1) Are there infinitely many n such that f(n) < m, i.e., such that f(n) = 17

(2) Are there infinitely many n such that n < f(n) < n2, i.e., such that f(n) must be
prime?

The same questions with |k| = 1, so that e; = +1.
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89:31 (Gerry Myerson) A covering set is a set of m X m integer matrices such that
Uaes Z™A = Z™, that is, for every integer row m-vector h there exists an integer row
m-vector k and an element A € S such that kA = h.

(1) Find conditions on Ay, A, ... such that there exists a covering set § = [A1,A42,..]
with det A; = A; for all j. (E.g., for every prime p there is a covering set of p + 1 matrices
of determinant p)

(2) Is every left-covering a right-covering? Le., does

| ZzrA=2z™ imply | Az™ =z™?
A€S A€S

Solution: (of (2); (1) is still open) On an 89-12-28 postcard Gerry Myerson notes that if

s={(3 3 )6 2).(40))

then it’s easy to verify that Va,b € Z, 34 € S and z,y € Z such that (z,y)A = (a,b), but

A ( ::/ ) = ( % ) has no solution A € S and z,y € Z — that is, S is a left-covering but

not a right-covering.

A particular case of (1) is: is there a finite covering (say in the case m = 2) with no two
determinants equal in absolute value? Equivalently, can Z @ Z be expressed as a finite union
of proper subgroups, no two of the same index?

89:32 (Leo Chouinard via Bart Goddard) Let 0 < a3 < az < ... < an be integers. Consider
inequalities of the forms a; + a; < ax or a; + a; > ax. Note that the systems

a;t+a; < ag s a; +a; > ag
a;ita; > Gkim Qiym +a; < ag

are “obviously unsolvable”.

(1) Are there any systems of inequalities of these forms which are unsolvable, but contain
no obviously unsolvable subsystems?

(2) How about if 0 < a3 < a3 < ... <L ap?
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