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UPINT = Richard K. Guy, Unsolved Problems in Number Theory, Springer, 1981. Second
edition going to press any minute now.

COMMENTS ON ANY PROBLEM WELCOME AT ANY TIME

Department of Mathematics and Statistics,

The University of Calgary,

Calgary, Alberta, Canada, T2N 1N4.
92-08-20.



Request for copies of correspondence

Dr. Robin Rider at the Bancroft Library on the University of California Berkeley campus
has stated that any correspondence that you may have had with D. H. Lehmer would be most
welcome at the Bancroft Library. As you may know, Dick Lehmer’s papers and journals are to
be archived there, and they welcome copies of his correspondence, or the originals if you don’t
plan to keep them. Please send such material to

Dr. Robin Rider,
Bancroft Library,
University of California,
Berkeley CA 94720, U.S.A.

John Brillhart supplies a list of Dick Lehmer’s students:

Donald Marvin Adelman, Some arithmetic properties of sequences of integers satisfying linear
recursion sequences, June 1947.

Henry Ludwig Alder, The existence and nonexistence of certain identities in the theory of
partitions, June 1947.

Tom Mike Apostol, A study of Dedekind sums and their generalizations, September 1948.
Jayanthi Chidambaraswamy, Divisibility properties of certain factorials, June 1964.

John Brillhart, On the Euler and Bernoulli polynomials, March 1967.

David Friedman, Cubic character sums and congruences, June 1967.

Ronald Lewis Graham, On finite sums of rational numbers, September 1962.

James Brown Herreschoff, A theorem on character sums, December 1968.

Nand Kishore, Arithmetical properties of Bessel functions, September 1961.

William Haddock Simons, Modular functions of stufe 2, September 1947.

David Breyer Singmaster, On means of differences of consecutive integers relatively prime
to m, December 1966.

Robert Samuel Spira, Sums of two squares and Bramahgupta’s formula, September 1962.
Harold Mead Stark, On the tenth complex quadratic field with class number one, June 1964.
Richard P. Stauduhar, The automatic determination of Galois groups, September 1969.
Donald Dines Wall, Normal numbers, September 1949.

Peter Jay Weinberger, Proof of a conjecture of Gauss on class number two, September 1969.

Mark Brimhall Wells, Simplification of normal form expressions for Boolean functions of many
variables, June 1961.

Jonathan David Young, Application of linear programming to the numerical solution of linear
differential equations, June 1962.

Alan Zame, On the distribution of the fractional parts of certain sequences, September 1965.



Preprints of
J. Buhler, H. W. Lenstra & C. Pomerance, Factoring integers with the number field sieve.

The sign up sheet at Asilomar was lost. Interested persons may write to

Carl Pomerance,
Department of Mathematics,

Boyd Graduate Studies Research Centre,
Franklin College of Arts and Sciences,
The University of Georgia,
Athens GA 30602, U.S.A.

COMMENTS ON EARLIER PROBLEMS

76:15 (Hugh Edgar) For primes p and ¢, and k an integer, how many solutions (m,n) does
p™ —¢" = 2" have? At most one? Only finitely many? Examples are 32 — 23 = 20; 53 — 112 = 22
52 — 32 =24,

Reese Scott’s paper “On the equations p* — ¢¥ = ¢ and |p® — ¢¥| = ¢” has,been accepted for
publication by J. Number Theory. He proves that, except in a few given cases, there is at most
one solution to p* — ¢¥ = ¢ with the parity of y fixed. In fact |p* — ¢¥| = ¢ has 3 solutions only
for the choices (p,q,c) = (2,3,1), (2,3,5), (2,5,3). See also 91:09 below.

76:44 (Carl Pomerance) For n = 210, n — p is prime for all p with n/2 < p < n. Are there any
larger n with this property?

No! Jean-Marc Deshouillers, Andrew Granville, W. Narkiewicz & Carl Pomerance, An upper
bound in Goldbach’s problem (preprint) used explicit sieve estimates and explicit versions of
Bertrand’s postulate in arithmetic progressions.

86:18 (P. Erdés, C. B. Lacampagne & J. L. Selfridge) Define the deficiency of the binomial
coefficient (":k), k < n, as the number of ¢ for which b; = 1, where n + i = a;b;,1 < i < k, the
prime factors of b; are greater than k, and []a; = k!

44 74 174 239 .

(8 ) ) (10) ) ( 19 ) and ( 14 > have deficiency 2;
46 47 241 .
(10> ) (10) and ( 16) have deficiency 3;

4
(i:) has deficiency 4; and <2288 ) has deficiency 9.

Are there others with deficiency greater than 17 Only finitely many? Are there infinitely many
with deficiency 17



Remark: Additional deficient binomial coefficients include
5179 8113 8114 96022
27 )’ 28 )’ 28 )’ 42 )’
2105 1119 6459
25 |’ 27 )’ 33 )’

each of deficiency 3. These are the only binomial coefficients with k +n < k* and k < 101 which
have deficiencies. Compare 91:03 below.

each of deficiency 2, and

87:02 (Alvan Beall & Bob Morris, via Blair Kelly) Computer experiments suggest that rows 1,
2,3,4,5,9, 14, 17, 18, 20, 21, 35 & 41 of Pascal’s triangle, and no others, consist entirely of
numbers representable as the sum of three squares. Is that true?

Yes. Andrew Granville & Zhu Yiliang, Representing binomial coefficients as sums of squares,
Amer. Math. Monthly, 97(1990) 486-493; MR 92b:11009.

88:09 (Brian Conrey) Let P(z) be a polynomial with real non-negative coefficients and P(0) # 0.
Then P has no real positive zeros. Let ¢ be a complex zero of P such that |arg(| is minimal,

where —7 < arg < w. Define .

N )
(z=0G-0

where ( is the complex conjugate of (. Then P,(z) has real coefficients: are they all non-negative?

Pi(z)

Remark: The exact reference to the affirmative solution is:

Roger W. Barnard, W. Dayawansa, K. Pearce & David A. Weinberg, Polynomials with nonneg-
ative coefficients, Proc. Amer. Math. Soc., 113(1991) 77-85.

88:12 Replace by 91:19 below.

89:20 (Hugh Edgar) Characterize those positive integers n for which
atf+y=afy=1

is solvable in Z[(,].

Remarks. In connexion with the “Solution” Hugh Edgar apologizes that in reporting on Bill
McCallum’s clever triple, which has the “ESP” (equal sum & product) property, he didn’t point
out that the ESP was not = 1, so that the solution was in fact to a slightly different problem.
See 91:10 below.

90:07 (Internet via Bob Silverman) Consider the set of areas of integer-sided right triangles,
ab(a®—b?), a > b > 0, arranged in increasing order A; = 6, Ay =24, ... ,Ag = Ay =210, ....
Is n=2A4, bounded?



Solution: (Andrew Granville) The number of pairs of integers a > b > 0 with ab(a? — b?) < n?

is
du

1 oo
Cn+ O0(n*3) where C = 5/; T
Proof: Let d = a — b > 1. Evidently

bd(d + b)(d + 2b) = ab(a® — b?) < n?
so that b < n?3. So we wish to find

>, A= +0(1)

1<b< [n2/3)

where z; is the positive real root of bz(z + b)(z + 2b) = n2. Now

/;
2/3

/ 2y db + O(z1)
1
2/3

/ bty db + O(n?/3)
1

(n2/3

J
zydb+ O ( > (@o - zb))
b=1

ln?/s

Il

2.

1<5< (n?/3)

Il

where z; = bt, so that ¢ = t, satisfies #(¢ + 1)(t+2) = n2b~*
Now d{t(t + 1)(t + 2)} = —4n?b~5db = =4n’bdb _ —2{t(t + 1)(t + 2)}3/?b db. Therefore

ars Con =it 4 1)(t 4 2)
J o = 2 ROEN L

b=n?/3

n t b=n?/? dt
- 5{[ t(t+1)(t+2)Jb=1 /- \/t(t+1)(t+2)}

Now if b =1 then ¢ = n?/3 4+ O(1) and if b = n?/3 then ¢t = 3n"23{1 + O(n=%/3)}. Therefore

2/3

n*/*+0() dt }

i n
btydb = —{O(n /3

/1 ' 2{ e n-2st0(n-/2) (L + 1)(t +2)
n [ dt

- 0 2/3
2/0 \/t(t+1)(t+2)+ (=)

and the result follows from combining the above results and taking t + 1 = u in the integral.




90:10 (Richard McIntosh) For z and y in [0,1], let L satisfy

1. L(z)+ L(1 — z) = L(1),
2. L(z) + L(y) = L(zy) + L(Z22) + L(45D)

l-zy
Is it true that L(8) — L(B%) = , where 8 = 1(1/3 + 2v5 —1)isarootof f*+28° - —17
1. and 2. are satisfied by the Rogers L-function
L=) = iin—%-llnzln(l -z), L(1) = m —, L(0)=0
B n=1 n2 2 - B

Remark: For this function L(8) — L(8%) and 72/30 agree to over 100 decimal places. McIntosh
later proved the identity.

90:17 (Bob Silverman) Find an upper bound, in terms of n and k, for the number of doubly
stochastic n X m matrices with k distinct entries. The entries are to be rationals in [0,1], and
are to include both 0 and 1. Also, for a given n, find the set of ¥ numbers which achieves the
maximum.

Remark: You can make more doubly stochastic matrices from {0, 1,1} thaa from {0,a,1} for
any o # 1, but it is not known how many such n X n matrices can be made from {0, 3,1}

Solution: Jeff Lagarias lets S(a) denote the number of n X n doubly stochastic matrices having
all entries either 0 or drawn from a = {ay, ... ,a,}, where all a; > 0. He also lets 5,(r) denote
the maximum of S(a) over all sets a of cardinality 7 and proves that

(P4 1) 2 Sa(r) 2 (r 4+ 1) 0

as n — oo. He notes that the set a which achieves the maximum, changes with n.

For even n Andrew Odlyzko obtains the better lower bound
(T + l)nz—O(n Inn)

by considering a= {0,2,,...,2} and the set T of n x (n/2) matrices from a, all of whose
column sums are 1. By the multmomial theorem, there are

(T‘+ 1)n7/2—0(nlnn) (*)

of them, since each column can be chosen independently of the others. Since each row sum must
be in {0, 2% 2 2 ...,1}, there are 2n/2 + 1 possible row sums, and so for some set of row sums 7,

, Tn, the set V of matrices of T' with those row sums has cardinality at least of the form (x).
But now to each matrix in V associate the matrix in V', obtained by replacing, in matrices of V,
each 0 by 2/n, each 2/rn by 2/n — 2/rn, etc. This gives the desired bound.



[90:18] The Remark: of Basil Gordon, printed at this point in the 1990 problems set, did not
concern 90:18, but applied to the previously unnumbered problem:

90:20 (W. Narkiewicz via Hugh Edgar) Given two algebraic number fields K and L, does the
coincidence of their Dedekind zeta functions, (x = (;, imply that K and L also share the same
number of ideal classes?

about which Daniel C. Mayer writes:

Denote by Cx and Cp the ideal class groups of K and L. If (k = (¢ and K is isomorphic
(conjugate) to L, then, of course, Cx and C; are also isomorphic. Hence it remains to investigate
so-called arithmetically equivalent fields, i.e. non-isomorphic fields K and I with (x = (r.

The actual existence of a pair of such fields, both of degree 180 over the rationals, with
common normal field N having Ss as Galois group Gal(N/Q) (and thus of degree 720) was first
established in section 3 of

1. Fritz Gafimann, Bemerkungen zur vorstehenden Arbeit von Hurwitz, Math. Z., 25(1926)
665-675.

This result of Gafimann is also discussed in §25 of

2. Helmut Hasse, Bericht iiber neuere Untersuchengen und Probleme aus der Theorie der alge-
braischen Zahlkérper, Teil 1I: Reziprozititsgesetz, Jber. DMV (1930) 1-204

|

and in Exercises 6.3 and 6.4 of

3. J. W. S. Cassels & A. Frohlich, Algebraic Number Theory, Proc. Brighton Conf., Academic
Press, 1967.

More convenient examples of arithmetically equivalent fields of degree only 7 over Q, and
important characterizations have been provided in

4. Robert Perlis, On the equation (x(s) = (x« (s), J. Number Theory, 9(1977) 342-360,
where he
(2) shows that there are no arithmetically equivalent fields of degree < 6 over Q,

(b) constructs two infinite families of arithmetically equivalent couples, one with the aid of
the cohomology of split group extensions, the other by means of permutation representations,

(c) shows that (x = (; implies the coincidence of the degree over Q, discriminants, ramified
primes, number of real and complex archimedean valuations, normal closure, and normal core of
K and L,

(d) proves that (x = (g if and only if for all non-ramified primes the decomposition (i.e., the
collection of degrees of the factors) is the same in K and L.

5. Robert Perlis, A remark about zeta-functions of number fields of prime degree, J. reine angew.
Math., 293 /294(1977) 435-436,



6. Robert Perlis, On the class numbers of arithmetically equivalent fields, J. Number Theory,
10(1978) 489-509,
where it is shown that

(e) (xk = (g if and only if the permutation representations of the group Gal(N|Q) of the
common normal field N of K and L induced by the unit representations of Gal(N|K) and
Gal(N|L) are isomorphic linear representations,

(f) ¢k = (; implies that #Cx - Rk = #Cr - Ry (Rk, Ry are the regulators), and, moreover,
even Syl,Cx ~ Syl,C (Sylow subgroups) for all primes p which do not divide a certain invariant
divisible at most by prime factors of the degree [N : K] (= [N : L]).

A generalization of arithmetical equivalence for relative extensions K and L over an arbi-
trary ground field k (not necessarily k = Q) has been developed in
7. Norbert Klingen, Zahlkorper mit gleicher Primzerlegung, Habilitationsschrift, Univ. Kéln, J.
reine angew. Math., 299/300(1977) 342-384.



PROBLEMS PROPOSED 91-12-19 & 22

91:01 (Paul Erdés) Let 1 < a; < ay < ...<ar <n, k> cn. Isit true that if n > no(c), there
are always three a; which have pairwise the same least common multiple? More generally, are
there r of the a; which have pairwise the same least common multiple?

Pomerance asks: can one prove that there are three a; so that the least common multiple of
every two has the same prime factors?

Perhaps a related combinatorial problem asks: Let |S| = n, A; C S for 1 < i <'t,. What is
the smallest ¢, which ensures that there are three A; which have pairwise the same union?

91:02 (Paul Erdés) Is it true that if 1 < a; < ay < ... < @ntz < 2m, then some a; is a sum
of consecutive a;? In view of Pomerance’s negative solution below, Erdos asks for the least
replacement for n + 2, and conjectures that this is of the form 7 + ¢ for some c.

Solution: (Carl Pomerance) We show that this is false for n = 2k, where k is odd, £ > 5. Indeed,

suppose that {ay,...,a,45} is

c1 3k 41 k
3k2 13 Lo U2k, 2k 41, 48\ (2641, é*l,sk,7k;‘1

(k—1,k k41, ).

Note that the four numbers deleted are a,+as, aztas, astas and as+as. Also ay+as,+a; = ay+as
and ay + a3 + a4 = as + ag. Further, a3 + a4 + a5 > 4k and a; + ay + az + ag > 4k. Finally note
that since £k > 5, we have k + 1 < % and 3’“.241 < 2k.

Example: k=5 {4,5,6,7,8,10,12,14,16,17,19,20}.

91:03 (Paul Erdés, Carole Lacampagne & John Selfridge) Obtain a good lower bound for g(k),

the least integer > k + 1 such that
k
ged ((g(k )) ,k!) =1,

Is it true that for k > ko, g(k) > k2 7 In fact, is it true that for k, > ko, g(ky) > k3 7

Remark: Compare 86:18 above. Deficient binomial coefficients must have n+k > g(k). Carole
later wrote that Paul has proved that g(k) > ck?/Ink for k large, and that Andrew Granville
thinks that he may be able to prove g(k) greater than any power of k for k sufficiently large.

91:04 (Paul Erdés) Let a; < ay < ... < a; < n be a Sidon sequence, i.e., all the sums a; + q;
are distinct. Is it true that 1 .
Ly o

Inz aita <z Gt 4

as ¢ — oo 7 In fact perhaps

<c¢Inlnz.

>

a,-+a,'<.r

a,-—i—aj

It is known that it can be > ¢,Inln z.



91:05 (Paul Erdds) Let a; < a; < ... < a; be a Sidon sequence (see 91:04). Can it be prolonged
to a perfect difference set, i.e.,

a1<a2<...<ak<ak+1<...<ap+1:p2+p+1

so that the differences a, — a,, 1 < u,v < p+ 1, u # v, represent every nonzero residue mod
p? + p + 1 exactly once?

I could not even decide if it can be prolonged to
a4 <y < oo < A < Qpyr < ... < Any  an < (14 0(1))n?,

i.e., if it can be made as dense as possible asymptotically.

Is it true that for every € > 0 there is an infinite Sidon sequence a, < n**¢ for n > ng(e) ?
Rényi & I proved [see Halberstam & Roth, Sequences, Oxford, 1966, p. 111, Theorem 2] that
there is a sequence satisfying a, < n**¢ for which the number of solutions of a; + a; = ¢ is < k.
Also Ajtai, Komlés & Szemerédi proved that there is a Sidon sequence satisfying a, < cn?/lnn.

Let a; < a3 < ... < a, be any sequence of integers. Is it true that it contains a Sidon
subsequence a;,,...,a;, withm = (1+ o(1))n? ? Komlés, Sulyork & Szemerédi proved this with
m > cn3.

91:06 (Bruce Berndt via David Boyd) We define iterated powers by

DI

a, (1‘112 , a(lags)
In his third notebook (p. 390 of vol. 2 of the Tata Institute’s facsimile edition), Ramanujan states
(written upside down)

a,® .
“ay* is convergent when 1 +Inlna, <

1(1 1 1 1
2 {E N (nlnn)? * (nlnnlnlnn)? + (rnlnninlnninlnlnn)? * }’

divergent when 1+ Inln a,, is greater than the righthand side with any 1 is replaced by 1 + e’

1. I can’t prove this.

2. When does the series in { } stop? Presumably when the iterated logarithm becomes nega-
tive?

3. What is the meaning of the statement on divergence? Presumably the assumption is that
> holds for all » when one “1” in a numerator is replaced by 1 + €.

10



Notes: It is well known that if a, = a, n > 1, then we have convergence for e7¢ < g < el/e,
This has been generalized to real and then complex a, under same inequalities. See

R. Arthur Knoebel, Exponentials reiterated, Amer. Math. Monthly, 66(1981) 235-252.

and Berndt’s book, Ramanujan’s Notebooks, Part I, p. 77 for references. The result for complex
a, is due to W. J. Thron in 1970.

Observe that when a, = e, 1 +Inlna, = 0. Thus, if Ramanujan’s result is true, it is an
improvement on best results that are known.

91:07 (Bruce Berndt via David Boyd) Let ¢(¢q) = 520 ¢™", 4(q) = S o grnt/2,

Ramanujan found that

¢3(q ( 1 n 3n+1 (_l)nq3n+2
¢( 3) + 62 (1 + 3n+1 + 14 (_q)3n+2>
6n+1

¥*(9) g
() =1+3 E ( ¢t 1 — q6n+5>

n=0

[See Berndt’s Ramanujan’s Notebooks, Part III, pp. 226-229 for proofs.]

The right sides have obvious arithmetical interpretations in terms of divisdr functions. What
is being counted on the left side?

Note: The coefficient of ¢" in ¢3(g) is r3(n), the number of representations of n as a sum of
three squares. The coefficient of ¢ in 1%(q) is the number of ways n can be represented as a sum
of three triangular numbers, which, by Gau8, is > 0.

91:08 (Neville Robbins) Is 13 the largest prime p for which bc = 1 mod p has no solutions with
1<be<p/27?

11



Solution: (Carl Pomerance) We shall show that this is indeed the case. What is needed is to
show that for each prime p > 13, there are integers a, b, ¢ with ap+ 1 = bcand 1 < b,c < p/2.
We consider three ranges: 13 < p < 100, 100 < p < 400 and p > 400.

Note that if (p+1)/2 is composite, so that it is mn for some m, n with 1 <m < n < (p+1)/4,
then p 4+ 1 = (2m)n shows we are done for p, namely we let a = 1, b = 2m (< p/2 for p > 13),
¢ = n. Thus in the range 13 < p < 100 we only have to worry about p = 37, 61, 73. But
2.-374+1=5-15,3-61+1=8-23and 2-73 +1 = 7-21. This completes the first range.

Let g be the least number for which ¢ 4 (p — 1). I claim that if p > 100, then

2<q<\/g. (1)

Indeed, [4,5,6,7]=420, so that if p is in the second range, then not all of 4,5,6,7 can divide
p — 1. Thus for these p, we have ¢ < 7 < \/g and (1) holds. Now assume p > 400. Note that
then

011112 5D (1 -2) (D) 34

so that not all three of l\/ﬂ , l\/}'EJ -1, l\/gj — 2 can divide p — 1. Thus (1) holds if p > 400.

Assume now that p is either in the second or third range, so that (1) holds. Let a be the least
positive solution to

ap+1=0mod gq. (2)

Then 1 < a < ¢—2. That is, ¢ + p— 1 implies a # ¢ — 1. Thus a+ 1 < ¢, and by the minimality
of ¢, we have (a + 1)|(p — 1). That is,

ap+1=0mod (a+1) (3)

holds. Let b = [a + 1,q]. From (2) and (3) there is some integer ¢ with ap 4+ 1 = bc. Now by (1),
1<2a+2<b<(a+1)g<¢*<E. Also

ap+1<ap+1<ap+p_p

b —2a+2 2a+2 2’

so we are done.

12



91:09 (Reese Scott, via Hugh Edgar) Assume that p and ¢ are given primes and ¢ a given positive
integer; can we show that if p* — ¢¥ = ¢ has a solution with y even, then it has no solution with
y odd?

91:10 (Hugh Edgar) Characterize those primes p for which there exists a triple of units u;, u,,
uz in Z[(p + ('] for which uy + uy + uz = ujuyus.
Remarks: “Yes” for p = 5, p = 13. What about p = 7 ?

Hugh Edgar reports that the question has been solved by Tony Costa, The American University,

Washington DC:
{ e+1 }
1, €,
e—1

is an ESP triple in Z[(, +(;']", i.e., the unit group of Z[(, + (, '], whenever the prime p satisfies
p > 5 and where € = 2 cos 27”.

91:11 (Gene Smith) It is known that there are triangles with rational sides and area (Heron
triangles); are there tetrahedra with rational edges, face-areas and volume?

Remark: This was asked as problem D22 of UPINT. A tentative draft for the second edition
currently reads as follows (comments still very welcome):

D22 Are there simplexes in any number of dimensions, all of whose contents (lengths, areas,
volumes, hypervolumes) are rational? The answer is “yes” in two dimensions;>there are infinitely
many Heron triangles with rational sides and area. An example is a triangle of sides 13, 14,
15 which has area 84. The answer is also “yes” in three dimensions, but can all tetrahedra be
approximated arbitrarily closely by such rational ones?

John Leech notes that four copies of an acute-angled Heron triangle will fit together to form
such a tetrahedron, provided that the volume is made rational, and this is not difficult. Eg.,
three pairs of opposite edges of lengths 148, 195, 203. Is there a smaller example? He also
suggests examining references on p. 224 of Vol II of Dickson’s History:

R. Guntsche, Sitzungsber. Berlin Math. Gesell., 6(1907) 38-53.
R. Guntsche, Archiv Math. Phys.(3), 11(1907) 371.

E. Haentzschel, Sitzungsber. Berlin Math. Gesell., 12(1913) 101-108 & 17(1918) 37-39 (& cf. 14(1915)
371).

O. Schultz, Ueber Tetraeder mit rationalen Masszahlen der Kantenlingen und des Volumen, Halle,
1914, 292 pp.

Dickson appealed for a copy of this last. Did he ever get one? Does anyone know of a copy?
Would they be willing to donate it, or offer it for sale, to the Strens Collection?

Leech also notes that this problem is answered positively in three dimensions by solutions
to Problem 3 in D18. This problem was published as Problem 930 in Cruz Mathematicorum,
10(1984) #3, p. 89, and the solution by the COPS (presumably an acronyn for the Carleton
(Ottawa) Problem Solvers) is:

Take a tetrahedron with a path of three mutually perpendicular edges, a = p2q% — r2s?,
b = 2pqrs, c = p’r? — ¢*s>. Then a® +b%, b* + ¢ are squares and a® + b2 + ¢? = (p* 4 s%)(¢* + %)

13



is a square if
Pt st =gt 4t
[John Leech notes “but not only if” and gives four casual examples, (1*+2*)(2*+13*) = 697

(114 24)(38% 4 43%) = 96732 (1% + 21)(314* + 863%) = 1275643%; (11 + 31)(9* + 4374) = 17292987,
which imply further ones of type (2% + 13%)(38* + 43%).]

This equation was solved by Euler. The solution mentioned in D9 is

P, g = :E7+I5y2—223y4:i:3x2y5+zy6
r,s = aSy+ 32 —22%P + 230 + o
“but this is not in any sense complete”. The smallest solution of equal sums of pairs of fourth
powersis z = 1,y =2, p = 133, ¢ = =59, r = 158, s = 134.

Buchholz found that the only rational tetrahedron with edge lengths < 156 was that with
edge lengths 117, 80, 53, 52, 51, 84, face areas 1800, 1890, 2016, 1170, and volume 18144. He also
shows that a regular d-dimensional simplex with rational edge has rational d-dimensional volume
just if d is of shape 4k(k + 1) or 2k? — 1.

Ralph Heiner Buchholz, Perfect pyramids, Bull. Austral. Math. Soc., 45(1991) 353-368.

Kevin L. Dove & John L. Sumner, Tetrahedra with integer edges and integer volume, Math. Mayg.,
65(1992) 104-111. b

K. E. Kalyamanova, Rational tetrahedra (Russian), Izv. Vyssh. Uchebn. Zaved. Mat., 1990 73-75;
MR 92b:11014.

91:12 (Xingde Jia) If a; < ay < ... is a sequence of nonnegative integers with the property that
all sums a; + a; + a5 (i < j < k) are distinct, is it true that

#{a;—a; | i>j, a—a;<z}=0(?) 7
A more general question (with more summands) can be asked.

91:13 (Kevin O’Bryant via Bart Goddard) D’(n) is the least possible maximum difference be-
tween (vertically or horizontally) adjacent entries when the numbers 1, 2, ...,n? are placed on
an n X n chessboard. For example,

7 11 14 16
4 8 12 15
2 5 9 13
1 3 6 10

generalizes to show that D’(n) < n and we believe that equality has been proved. [Can anyone
supply a solution? or a reference?] For the corresponding problem on an n x (n — 1) board,
establish equality in D(n) <n — 1.
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91:14 (Hugo Sun) A magic square on a group G is an n X n matrix whose entries are distinct
elements of the group G such that the product (or sum depending on the group operation) of
each row, column and diagonal all equal the same group element. Thus, the usual magic square

of order n is a magic square over the cyclic group of order n? if we use 0,1,2,...,n%—1 instead
of 1,2, ..., n%
Problem: Does there exist a magic square on a nonabelian group of order 167 ... of order n??
Solution: (Peter Montgomery) A magic square for two nonabelian groups of order 16. Use
quaternions * = j2 = k2 = —1, ijk = 1, with an extra element z commuting with ¢, j, k and
z? = £1

o =1 T —iz

J —jz jz =3
kz -k k —kz

1 -z =z -1
All row, column and diagonal products are z2.

91:15 (Paul Erdés & Ron Graham) Is it true that any coloring of the integers with k colors gives
a monochromatic solution of v

1
Z— =1, z;<zy<... (finite sum)?
Z;

This is open even for k = 2. If the answer is affirmative, let f (k) be the smallest integer for which
every k-coloring of the integers 1 < t < f(k) contains a monochromatic solution. Determine or
estimate f(k).

91:16 (Paul Erdds) Is it true that if

1 1 1
—+—+...+—=1, z<z,<...< 2,
T [P T,

then lim inf > > e 7 It is trivial that the limit is > e. In fact perhaps it is infinite.
91:17 (Paul Erdés) Is it true that for every solution of

1 1 1
—+—+4+...+—=1,

T T Zn

max(zi4; — z;) > 3 7 {2,3,6} shows that > 3 is not true but perhaps this is the only counterex-
ample. Perhaps max(z;4; — z;) < k has only a finite number of solutions.
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91:18 (Paul Erdés & 1. J66) Let 1 < ¢ < 1+ €. Consider all the numbers
Ze,-qi, ¢ =0o0r1l, 1<n<o0
1=0

ordered by size, 1 < z; < z3 < .... Prove that if € is sufficiently small then zy; — z; — 0.
Perhaps if ¢ < qo, ¢ = go + 1 (the smallest Pisot-Vijayaraghavan number) then z;,; — z; — 0.

91:19 (D. H. & Emma Lehmer) Find the relation between the primitive root g used in generating
the cyclotomy of degree e and the sign of M in

4p=L*+2TM? L=1mod6 for e=3 and e=6,

the sign of b in
p:a2+4b2, a=1mod8 for e=4

and the signs of z, u, v, w in
16p = 22 + 50u? + 500 + 125w?, zw = v’ —u® —4uv for e =5.

Comment: The symmetric functions of the periods are independent of the primitive root. This

is no longer the case for semi-symmetric functions. The simplest such function is
.

e—1 e—1 pM ife=3
Sontmigs = Y mimigier = 4 pb ife=4
=0 i=0 —(3pz +8p+4)+25(2v+w)p ife=5

Numerical evidence

e=3, p=L*427, L=1mod3

P 7 13 19 37 79 97 139 163 313 349 607 709 877 937
L 1 -5 7 -11 -17 19 -23 25 =35 37 49 53 =59 61
g 3 2 2 2 3 5 2 3 10 2 3 2 2 5
51 —4 -3 —17 41 35 -—151 247 -308 765 —543 —1956 1733 3313 —2707
S 3 10 2 4 114 -54 108 —145 452 —892 —1349 2442 2436 —3644

S-S -p-p -p p —-p -p p —p P P -p -p P P

e=4, p=a*+16, a=1mod4

P 17 41 97 137 241 641 977
a 1 5 9 —-11 —15 25 —-31
g 3 6 5 3 7 3 3
Sh 18 64 6 —60 —708 2604 —4824
S3 —-16 —18 200 —334 —226 1322 -2870
S1—S83 2p 2p —2p 2p —2p 2p —2p
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Within a month, a preprint of
Andrew J. Lazarus, Lehmer’s semi-symmetric cyclotomic sums and delta units,
had appeared, it will be published in Acta Arithmetica.]

Proposition 1.1 is

1853(2,7) = p(L+ 9(-1)M) -2, j=1,2.
and Proposition 2.1 is
1654(2,7) = =1 — p(1 — 2a + 4(=1)"7Tb), j=1,3
1654(2,2) = 2pa —p - 1
645%(3,7) = 1 - Tp" 4 6p — dbp(~1)"F* (3 +a), j=1,3
6454(3,2) = —=3p° + p(6 — 4a®) + 1

where p=a?+ 62, b=0mod 2,5 >0,a+b=1mod 4.

91:20 (? via John Brillhart, Ron Graham & Andrew Odlyzko) Is it true that 6 is a primitive
root of about 95% of primes of shape n? + 1087 Andrew Odlyzko has checked this numerically
for primes p < 4 x 10" (there appear to be 83413 such primes, 4152 of which do not have 6 as
a primitive root) and has produced a heuristic argument, based on reciprocity laws, that this
ought to be true. :

91:21 (Sinai Robbins) What groups G have G = A(G), the group of automorphisms of G ?

Remark. Bill Blair gives the reference W. R. Scott, Group Theory, p. 314, esp. exer. 11.4.11
for the fact that S, = A(S,) for all n > 3 except n = 6, where S, is the symmetric group on n
letters. Hugh Edgar gives the reference Kurosh, Theory of Groups, Chelsea, Vol. 1, p. 92. Later,
Bill Blair supplied two more references:

E. Schenkman, Group Theory, pp. 94-96; among other things Schenkman shows that G = A(G)
if G = A(H) where H is the direct product of nonabelian simple groups.

M. L. Kargapolov & Ju. I. Merzljakov, Fundamentals.of the Theory of Groups, pp. 42-44 do not
add any new results but offer the opinion that “the fact is that complete groups do not play
any major role in group theory. (It is analogous to that played by perfect numbers in number
theory.)” Bill’s inclined to think they’re probably right.

91:22 (Sinai Robbins) Given (non-trivial — what does that mean?) a, b, ¢ and d, are there
infinitely many pairs m, n such that

a"+b"=c"+d™ 7
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Remark: Andrew Granville observes that a negative answer follows easily (take S as the set of
prime divisors of abed) from the Main Theorem on S-unit equations in

Jan-Hendrik Evertse, On sums of S-units and linear recurrences, Compostiio Math., 53(1984) 225-244;

MR 86¢:11045,
which states that given any finite set S of primes and an integer n > 2, there are only finitely many

n-tuples of integers z,,...,%, with z; + ... + 2, = 0, ged(zy,...,2,) = 1, prime plz, -z, =
p € S, and no proper subsum of z; + ...+ Zn equal to zero.

91:23 (Hugh Edgar) It has become an almost classical question to ask if there are any integer
solutions of z® + 4 + 23 = 3 other than {1,1,1} and {4,4,—5}. Cassels has shown that z =y =
> mod 9. Alf van der Poorten asks if there are any other 3-adic integer solutions.

The plane sections
B+ +2=3]n[z+y+2=3m

of the surface are elliptic curves
(z 4 y)(z — 3m)(y — 3m) = 9m” — 1

and m has to be an integer = 1 mod 6. The only singular curve is given by m = 1.

J. W. S. Cassels, A note on the diophantine equation z* + y* + 2> = 3, Math. Comput., 44(1985)
265-266. ’

Manny Scarowsky & Abraham Boyarsky, A note on the diophantine equation z" + y" 4 2" = 3,
Math. Comput., 42(1984) 235-237.

91:24 (Dick Katz) Inscribe an equilateral triangle in a circle of unit radius. Inscribe a circle in
the triangle. Inscribe a square in the second circle, and inscribe a circle in the square. Inscribe
a regular pentagon in the third circle, and continue indefinitely. The radii of the circles converge

to
o0
H cos il
k=3 k
What is this number?

91:25 (Andy Pollington) Write k+/10 with k € Z in base 10 as }_ €;10". Prove that it is impossible
to have ¢ = 0 or 1. In fact, are such numbers (with any integer r > 2 in place of 10) always
either transcendental or rational? Compare

Kurt Mahler, Some suggestions for further research, Bull. Austral. Math. Soc., 29(1984) 101-108,

and a recent Acta Arith. article on the Cantor set. Are the irrational elements of the Cantor set
necessarily transcendental?

fa=3Yegr' 8=3¢€s with r, s integer bases and «a is irrational, show that g is not
algebraically dependent on a.

18



