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COMMENTS ON EARLIER PROBLEMS

70:XY (L.J. Mordell) Let p be an odd prime. Write f(z) = z?, g(z) = az?, where a is a
quadratic non-residue of p. It is trivial that if n is any integer, then either the congruence
f(z) = n or g(z) = n is solvable mod p. Find other functions with this property. Prove that,
if d is any integer, the functions f(z) = 2z + dz*, g(z) = z — 1/4dz? have this property.

Remark. See 1989 Problems set. This is a solved problem, but readers were offered
an opportunity to solve it themselves, in the hope that a more general solution might be
obtained, before the original solution & solver were given.

76:15 (Hugh Edgar) For primes p and ¢, and h an integer, how many solutions (m,n) does
p™ — ¢" = 2" have?

See 1989, 1990, 1991 and 92:17 below.

90:03 (Basil Gordon) Is it true that for every positive integer n there is a one-one map L of
{1, 2, ... ,n} onto {0, 1, ... ,n— 1} such that L(ab) = L(a) + L(b) whenever a, b and ab
are all in {1,2, ... ,n} ?

Remark: It is easy to confuse this problem with one of Forcade, Lamoreaux & Pollington,
Amer. Math. Monthly, 93(1986) 119-121 (see also 96(1989) 905).

Gordon’s problem is a special case, so the counterexamples found by Forcade & Pollington
for their problem in the case where the mapping is onto a group (called an FLP group below)
also serve as counterexamples for Gordon’s problem. Contrast the two examples for n = 10:

1 2 3 4 5 6 7 8 9 10
Lp 0 1 8 2 4 9 7 3 6 5
L 01 4 2 6 5 9 3 8 7

The former is obtained by using 2 as a primitive root of n + 1 = 11 and the entries, which
are exponents (logarithms) are the elements of the additive group of residue classes mod 10.
However L(3) + L(3) =8+ 8 # 6 =.L(3 X 3) unless the addition is so interpreted. .We can
satisfy Gordon’s requirements by rearranging the entries as in the second example. Forcade
& Pollington gave the counterexamples 195 and 255 to their own problem and 195 is the
least such. Perhaps n = 105 (but not » = 35) is the smallest counterexample to Gordon’s
problem; John Selfridge has done a backtrack on this by hand, but it should be confirmed
by machine. Chandler (1988) has shown that every odd order FLP group is commutative.

K.A. Chandler, Groups formed by redefining multiplication, Canad. Math. Bull., 31(1988)
419-423; MR 89m:20021 [1986, 119].

R.W. Forcade & A.D. Pollington, What is special about 1957 Groups, nth power maps
and a problem of Graham, in R.A. Mollin (editor) Number Theory, Proc. 1st Conf. Canad.
Number Theory Assoc., Banff, 1988, de Gruyter, 1990, 147-155.

Further Remark: Blair Kelly III has done a computer search, revealing that n = 85
is the smallest counterexample. The next counterexamples are for 92 < n < 108, n = 112,



n =113, 115 < n < 118 and 121 < n < 156. He says that it is natural to conjecture that
there are no Gordon maps for n > 120.

91:02 (Paul Erdés) Is it true that if 1 < a; < ay < ... < an42 < 2n, then some a; is a sum
of consecutive a;? In view of Pomerance’s negative solution below, Erdés asks for the least
replacement for n + 2, and conjectures that this is of the form n + ¢ for some c.

A solution was given by Carl Pomerance. Further results are due to Freud and to Coppersmith
& Phillips. Here’s a proposed passage from section E30 in the forthcoming second edition
of UPINT:

If 1 <a <ay <---<a <nis asequence in which no a is the sum of consecutive
earlier members, then Pomerance found that maxk > [2£2] and R. Freud later showed
that maxk > %n. They notice, with Erdds, that maxk < %n, even if we only forbid
sums of two consecutive earlier members. Coppersmith & Phillips have since shown that
maxk > 22n — O(1) and they lower the upper bound to maxk < (2 = &)n + O(In n) with
€= gz ,

Erdés asks if the lower density of the sequence is zero; perhaps

1 1
i — — =0 ?
¢ lnzza;

a, <zt

Don Coppersmith & Steven Phillips, On a question of Erdés on subsequence sums, (preprint, Nov.
1992)

Robert Freud, James Cook Math. Notes, Jan. 1993.

91:03 (Paul Erdés, Carole Lacampagne & John Selfridge) Obtain a good lower bound for
g(k), the least integer > k + 1 such that

o (1)

Is it true that for k > ko, g(k) > k* ? In fact, is it true that for ky > ko, g(k;) > k3 7
Remark: Deficient binomial coefficients must have n+k > g(k). In their forthcoming paper

P. Erdés, C. Lacampagne & J. L. Selfridge, Estimates of the least prime factor of a
binomial coefficient, Math. Comput., 60(1993) - .

prove that g(k) > ck?/1In k for k large, and Andrew Granville (unpublished?) uses exponential
sums to prove that g(k) > k™*/Innk [he announced at Corvallis that he can prove that
g(k) > k=B

91:06 (Bruce Berndt via David Boyd) We define iterated powers by

55

az
ap, a,”, g o



In his third notebook (p. 390 of vol. 2 of the Tata Institute’s facsimile edition), Ramanujan
states (written upside down)

aa‘; -
“ay;? s convergent when 1+ Inlna, <

111 1 1 1
2 {;5 + (nlnn)? T (nlnnlnlnn)? T (nlnnlnlnninlnlnn)? + }’

divergent when 1+Inln a, is greater than the righthand side with any 1 is replaced by 1+e¢.”

1. I can’t prove this.

2. When does the series in { } stop? Presumably when the iterated logarithm becomes
negative?

3. What is the meaning of the statement on divergence? Presumably the assumption is
that > holds for all » when one “1” in a numerator is replaced by 1 + €.

Notes: It is well known that if a, = a, n > 1, then we have convergence for e=¢ < a < e'/¢.
This has been generalized to real and then complex a, under same inequalities. See

R. Arthur Knoebel, Exponentials reiterated, Amer. Math. Monthly, 66(1981) 235-252.

and Berndt’s book, Ramanujan’s Notebooks, Part I, p. 77 for references. The result for
complex a,, is due to W. J. Thron in 1970.

Observe that when a, = €'/¢, 1 + Inlna, = 0. Thus, if Ramanujan’s result is true, it is
an improvement on best results that are known.

Remark: In a 92-10-18 preprint,
Gennady Bachman, On the convergence of infinite exponentials,

gives two essentially best possible tests for convergence:

an
a-

a,’ = - . -
If E, = a5* ,a, = e and a, = €/, and F,, defined analogously in terms of a,,
converges, then so does E,.

E,, converges if there exist positive integers ko and no such that for all n > ny we have

1+In|lna,| =1+ In|b,|

P £ P S S — }
" 20n? 0 (nLy(n))?  (nla(n)Ls(n))? (nLy(n)Ly(n) - -~ Liy(n))?
where Li(z) = L(z) = In(z) for z > z; = e and Li(z) = Lg_1(L(z)) for > z; = e™*-*.

E,, diverges if a, > 1 and, for n > n, with some positive integers ko and ng, and € > 0,
1+ 1Inlna, > the above expression with the last numerator 1 replaced by 1 + €.



91:10 (Hugh Edgar) Characterize those primes p for which there exists a triple of units wu,,
Uy, uz in Z [(, + ¢, '] for which u; + uy 4 uz = uyupus.

Remarks: Compare 89:20. Richard Mollin notes that the general question was earlier
raised in

R. A. Mollin, Charles Small, K. Varadarajan & P. G. Walsh, On unit solutions of the equation
Tyz = z + y + 2z in the ring of integers of a quadratic field, Acta Arith., 48(1987) 341-345;
MR 89d:11019.

as it was in 85:21, the MSVW reference also being given in 1986 and 1987.

91:12 (Xingde Jia) If a; < a, < ... is a sequence of nonnegative integers with the property
that all sums a; + a; + ax (i < 7 < k) are distinct, is it true that

#{ai—a; | i>j, a;i—a;<z}=0(z¥?) 7
A more general question (with more summands) can be asked.

Solution (Don Coppersmith): No. We construct an infinite sequence of a; with infinitely .
many values z for which

#{a;—a;|i> 7, a; — a; <z} = Q(zgg/wo).

We build the sequence piece by piece. Repeat the following process infinitely often. Select a
value y which is larger than three times the largest of the previously constructed values a;
and set z = y'%°. Add the following values a; to the sequence:

{4'z, 42 + iy | z/(2y) < i < z/y).

Claim: for each chosen value of z there are at least £°/1°0/2 pairs (a:,a;) whose (distinct)
differences are all less than z, namely

{4'z, 4z + iy | 2/(2y) <i < z/y}.

Claim: no two triples from this sequence have the same sum. Given two triples with the
same sum, let (z,y) be the largest values of z and y associated with any of the a; in these
triples. Then for some 1 < j < k, I < m < n we have

a;+aj tax =a+ay, +a,
where each element is one of the following:
4z, x4y 2 < y/3.

Here z represents any element belonging to a smaller (z,y). Break these elements into their
high order parts, medium order parts and low order parts

4'z, 4'z, 0 0, iy, 0 0.0, =



Because the sum of the low order parts is less than y, which is the quantum by which medium
order parts are measured, and similarly the medium order parts sum to less than z, we have
that the sum of the high order parts must agree, as must the sum of the medium order parts
and the sum of the low order parts. The high order parts tell us that

k=n, j=moraj, a, <y/3, t=lora;,aq<y/3.

From z/(2y) < @ < z/y, we know that we cannot have iy + jy = ky, so the medium order
parts agree separately. Finally the low order parts z can be dealt with by induction. So the
triples must agree identically.
This tells us that no two triples can have the same sum, and for infinitely many values
of z we have
#{ai—a; |1>], a;—a; <z} = Q(z°%/109),

Clearly the 2°%/1% can be replaced by any function which is o(z).

91:20 (D. H. Lehmer) Is it true that 6 is a primitive root of about 95% of primes of shape
n2+108? Andrew Odlyzko has checked this numerically for primes p < 4 X 10'? (there appear
to be 83413 such primes, 4152 of which do not have 6 as a primitive root) and has produced
a heuristic argument, based on reciprocity laws, that this ought to be true.

Attribution. John Brillhart corrects this to D. H. Lehmer. He & Richard Blecksmith
computed this a short way. Andrew Odlyzko did the heavy computing.

91:21 (Sinai Robbins) What groups G have G = A(G), the group of automorphisms of G ?

Remark. In addition to the remarks made last time, Nigel Boston observes that such groups
can have essentially arbitrary additional structure, since any group (by a modification of
Wielandt’s theorem) can be imbedded subnormally in such a group.

91:24 (Dick Katz) Inscribe an equilateral triangle in a circle of unit radius. Inscribe a circle
in the triangle. Inscribe a square in the second circle, and inscribe a circle in the square.
Inscribe a regular pentagon in the third circle, and continue indefinitely. The radii of the

e

circles converge to

?-|=!

What is this number?

Comments (Richard McIntosh): (a) Abramowitz & Stegun, p. 75, give
4
H COS 1 H H ( k2(2n _ 1)2) :

(b) Since %ln cosz = —tanz can be expanded as a power series involving Bernoulli
numbers, it follows that

ln,f[ cos{— Zln cos -
=3 k=



(27" — 1)(27)*" By, ((2#)2“B2n (=1)*(2* — 1))

712::1 2n(2n)! 2(2n)! 2o
= (22" - 1) ( 1 )
= 2 ((2 2n)—1—- —
3 cen (e -1 - 5
where B,, is defined by
% = z™ 21
= B, — d = —

Using MAPLE we get [];Z; cos T = 0.11494 20448 53296 20070 10401 57469 59874 28307 95337-
-20086 35168 44023 39651 89660 128253530511779. ..

(c) Since [];Z, cos & = == it follows that if we use only 2"-gons (n = 2, 3, 4, ...), then
the radii converge to %

PROBLEMS PROPOSED 92-12-19 & 22

92:01 (Richard Mollin via Andrew Granville) If 6k+1, 12k+1 and 1841 are all primes, then
n = (6k+1)(12k+1)(18k+1) is a Carmichael number, and p|n implies that p— 1|ln—1. The
methods of the Alford, Granville, Pomerance paper on the infinitude of Carmichael numbers
imply that there are infinitely many n such that p|n implies p? — 1|n — 1. Find such an n.

Solution: Richard Pinch has counted all Carmichael numbers less than 10,
443372888629441 = 17-31-41-43-89-97-167 - 331

[443372888629440 = 2°3°5 - 7°11 - 47 - 83 - 211 - 347]

and

582920080863121 = 41 -53 - 79 - 103 - 239 - 271 - 509
[582920080863120 = 23%5 - 7211 - 13 - 17 - 127 - 17839]
are the only such numbers in this range.
Sid Graham found 18 such numbers, the smallest being

5893983289990395334700037072001 = 29 -31-37-43-53-67-79-89-97-151 - 181 - 191 - 419 - 881 - 883

and he found 17 other numbers that satisfy the slightly weaker condition (p? — 1)/2|(n - 1).
W. Red Alford, Andrew Granville & Carl Pomerance, (preprint, 1992).
R. G. E. Pinch, The Carmichael numbers up to 10'5, Math. Comput., 607(1993) —.

92:02 (James P. Jones via Richard Guy) An analogous problem to 92:01 arose from a study
of Lucas sequences. Are there any odd squarefree n such that p? — 1|n + 1 whenever p|n?
Apart from n = 3 is there even an example where (p? — 1)/2 divides n + 1?7 He gave several
examples, including 5, 35 = 5-7, 6479 = 11-19-31, 84419 = 29-41-71, 1930499 = 89-109-199,



7110179 = 37 -41 -43- 109, 15857855 = 5-13 - 17 - 113 - 127, where (p* — 1)/4 always divides
n+ 1.

92:03 (Gene W. Smith) Define a Pascal polynomial as

k\ , k+1 sl kE+2\ ., k+n
(B (e () (0)

For example, for n = 6 and £ = 1 and 3, we have
28 +22° + 3z + 423 + 527 + 6z + 7,
2% + 4z° + 102" + 202° + 352 + 56z + 84.

Each of these examples has Galois group PGL,(5). Do any other Pascal polynomials have
Galois group S,?7 Why do these two examples behave in this way?

92:04 (Gerry Myerson) Let

n!

n =
f(n) BIZIR x 1,2, . s 1]
where the denominators in the denominator, 2, 3, 7, 43, 1807, . .. are each one more than the
product of the preceding ones, z! is interpreted as |z]!, and [1,2,...,7n] is the least common
multiple of 1,2, ..., n. Then f(n)is an integer forn = 1,2, .... Is f(n) odd infinitely often,

or, given m, is there an ny such that for n > ng, m|f(n)?

Remark. On 93-02-08 Gerry Myerson writes that f(n) is odd only for 135 values of n,
the largest of which is 1966081. He can show that, for 2 < m < 5, m divides f(n) for all
sufficiently large n, but for general m the problem remains open.

92:05 (Russell Lyons via Jeffery Lagarias) Prove that there are no integer solutions s, y,

z > 2 to the equation
In(yz)  (yz— (s +1)
In(s) (s -D(w+1)
Solution: (found by Lagarias during the meeting) For the left side to be rational, we

must have yz = t™, s = t", where m, n > 1, t > 2 are integers. Left side is then m/n, which
may be assumed to be in lowest terms (¢ may be a power).

m (™ = 1)(zt"* + 1)
S T V G

We will show that t"* — 1 has a large factor f not cancelling with the numerator.

If a prime p divides z, then p divides t. Hence both terms on the right are = +1 mod p and
p does not dividem. Thusm L z=1landm L n = 1som L nzand ged(t™—1,1""—1) = t—1.
Also, ged(t" — 1,2t™ + 1)|z+ 1 and
" —1
(t-1D(tr* =1,z + 1)

divides f

8



and f divides n. But the left side

. nz—1
o Ittt
- z+1

unless n = 1, 2 = ¢t = 2 and these don’t work.

>n

This will appear in a paper:
Russell T. Lyons, Equivalence of boundary measures on covering trees of finite graphs, Ergodic
Theory Dyn. Systems (submitted).

92:06 (Michael Reid) Problem 1339, Math. Mag., 63(1990) 56, proposed by George Gilbert,
was to find all integer triples (z,y,2),2 < z < y < z, such that

Yy2=1modz, zz=1mody, zy=1mod 2.

The only solutions are perms of {2,3,5}. See 64(1991) 63, where it was noted that this
appeared as Problem #32 on p. 292 of Hillman & Alexanderson, A First Undergraduate
Course in Abstract Algebra. It is the case k = 3 of Problem 1375 64(1991) 197, proposed by
Lorraine L. Foster. Prove that for each integer k > 3 there exist positive integers n, n,, ...,
ny such that [],.; n; = 1 mod nj, for j =1, 2, .. k. For a solution, see 65(1992) 197-198.

From the sequence a,, a,, ... = 2,3,7,43, 1807, ... (see 92:04 above) we can construct
two families of solutions:

Ay, Aoy - .oy Qp_1, A — 2 Ay, Aoy ooy Qp_g, 205y — 3, 2a_; — 1
2,3,5 2,3, 5
2,3, 7,41 2,3, 11, 13
2,3,7,43, 1805 2,3,7,43, 3611, 3613
Question 1. Suppose that z,, ..., z; are pairwisecoprime. Can this necessarily be extended
to a solution zy, ..., z; of the original problem for some k > [?

For example, David Moews extended the single term a; = 4 to k = 10:
4,3,5,7,17,67, 16501, 52978181, 710010917562137, 155213816675809492328855458243.
It’s not hard to see that the original system is equivalent to the single congruence

k

k
ZHziEImodej (%)

J=1i#j
and that this is equivalent to
1 1 1 1
—t — = - (***)

z; ) T T1Ty - - Ty

being an integer. Note the connexion with Giuga’s conjecture, 92:07 and 92:15 below and
UPINT A17.



Some other questions that may be asked are:

Question 2. Does every integer > 1 occur as an z; in some solution?

Question 3. Are there solutions of (% * %) in which the integer is greater than 1 7
Question 4. Are there solutions of (* * %) with the integer arbitrarily large?
Question 5. Are there solutions of (* * %) for every positive integer?

Question 6. If p; is the i-th prime, then p;, ps, ..., px is a solution for k = 3. Isit a
solution for any £ > 3 7

Question 7. Are there infinitely many solutions with each z; prime? Compare Giuga’s
conjecture again.

Question 8. Does the greedy algorithm work? I.e., given z,, ..., z;, choose z;;; to be
the smallest integer coprime to the previous z; which doesn’t increase the integer part of
(* * ¥) when it is appended. [This appears to be what Moews did in the k¥ = 10 example
above.]

Question 9. How about the “absent-minded algorithm” which chooses the smallest
integer > 1 which is coprime to the previous z; ?

It is easy to see that for a fized k, there are only finitely many solutions to the original
problem. In the following diagram, Q; —Q; means that an affirmative answer to Q; implies
an affirmative answer to Q;.

Qs

/

Qs
Qs

/

Q.

/

Qs
Q

\/!
/A

Qs Q-

92:07 (Gerry Myerson) Giuga’s conjecture. Compare (* * *) in the previous problem,
92:15 below, and A17 in UPINT.

1"'42" 4. (n=1)""'=-1mod n

if n is prime. Is the converse true? If n is composite, then n is a Carmichael number and

r 1 . .
Z — — — 1s an Integer.
p n

pln



There is an equivalent statement involving the Bernoulli numbers:

nB,_; = —1 mod n.

92:08 (Andrew Granville) A New-Year email greeting from Hendrik Lenstra informed us
that
1993 = 43 +12° =35 + 316 =29° + 224> = 72 4 6 - 18?

where each second summand is divisible by only the primes 2 and 3. Find the next year which
Is so representable. Are there any other examples of primes p and ¢ and positive integers a,
b,c,d, A, B, C, D with

a2+A2:b2+pBQ:C2+q02:d2+qu2
and such that the only primes dividing ABC D are p and ¢?

Solution: (Reese Scott)

2113 =13324+322=3124+2-24> =412+ 3-122 = 1324+ 6 - 18?

92:09 (Andrew Granville) Find a more attractive proof, than that using the theory of binary
quadratic forms, that for any n > 1 there are nonzero integers a;,, b; such that

af-{-bf:a%+26§:a§+3b§:---:aZ-{—nbi

Remark: Reese Scott has a proof which uses class numbers, but which Hugh Edgar
thought qualified as not using the theory of binary quadratic forms. Whether it satisfies the
~ “attractive” criterion he leaves others to judge.

92:10 (Ron Graham via Neville Robbins) The diophantine equations
2z%(z? - 1)=3(y*-1) and (2z-12=2"-7

each have the solutions = = 0, 1, 2, 3, 6 and 91. Is this merely an example of the Strong Law
of Small Numbers?

92:11 (John Selfridge) The proposer gave an extended lecture on “envy-free” cake-cutting
and wine-pouring, in which he described the Selfridge Protocol for the division of a cake into
3 envy-free parts using at most 5 cuts. He asked for envy-free division of wine between

(A) 4 people, using 4 glasses, finishing in a bounded number (5?) of rounds

(B) 5 people, k glasses, one round. Brams & Taylor (see below) give a solution for k = 9.
Try for k = 6, then £ = 5 or 7, according as success is achieved or not.

Bibliography courtesy The Strens Collection, The University of Calgary.

[early papers copied from Singmaster’s Sources.]
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Ethan Akin, Vilfredo Pareto cuts the cake (preprint, Jan 19937?). [Math. Dept., The City College, 137th
St. & Convent Ave., New York NY 10031, U.S.A]

A. K. Austin, Sharing a cake, Math. Gaz.; 66(1982) 212-215.

A. K. Austin & Walter R. Stromquist, in Comments and complements, Amer. Math. Monthly, 90(1983)
474.

Julius B. Barbenel, Super envy-free cake division: the N = 3 case (preprint, Oct. 1992). [super envy-
free if each believes he has > 1/N and all others < 1/N. A measure-theoretic existence proof. Is there an
algorithm?]

Julius B. Barbanel & Alan D. Taylor, Preference relations and measures in the context of fair division,
preprint.

W. J. Baumol, Superfairness: Applications and Theory, MIT Press, Cambridge MA, 1985.
Anatole Beck, Constructing a fair border, Amer. Math. Monthly, 94(1987) 157-162.

S. Bennett et al., Fair Divisions: Getting Your Fair Share, HIMAP [High School Math. and its Applica-
tions] Module 9 (Teachers’ Manual).

M. Berliant, K. Dunz & W. Thomson, On the fair division of a heterogeneous commodity, J. Math. Econ.,
21(1992)

Max Black, Critical Thinking, Prentice-Hall, Englewood Clifts NJ, 1946, 2nd ed 1952; Problem 12, pp. 12
& 432. [Raises the question but only suggests combining two persons.]

K. Borsuk, Drei Sitze iber die n-dimensionale euklidische Sphare, Fundamenta Math., 20(1933) 177-190.
[Ham-sandwich theorem]

Steven J. Brams & Alan D. Taylor, An envy-free cake division algorithm (preprint), see David Gale.
[requires 2"72 + 1 glasses to satisfy n people.]

Steven J. Brams & Alan D. Taylor, More envy-free cake division (preprint).
Steven J. Brams & Alan D. Taylor, An envy-free cake division protocol (preprint received Jan. 1993).
Lester E. Dubins & Edward H. Spanier, How to cut a cake fairly, Amer. Math. Monthly, 68(1961) 1-17.

J. Elton, T. Hill & R. Kertz, Optimal-partitioning inequalities for nonatomic probability measures, Trans.
Amer. Math. Soc., 296(1986) 703-725.

S. Even & A. Paz, A note on cake-cutting, Discrete Appl. Math., 7(1984) 285-296.
A. M. Fink, A note on the fair division problem, Math. Mag., 37(1964) 341-342.

R. Fisher, Quelques remarques sur I’estimation en statistique, Biotypologie, (1938) 153-159. [Ronald
Aylmer Fisher?] - ‘ o T s

R. Fisher, Uncertain inference, Proc. Amer. Acad. Arts Sci., 71(1936) 245-257. [Ronald Aylmer Fisher?]

David Gale, Mathematical Entertainments, Math. Intelligencer, 15 No. 1 (Winter 1993) 48-52, esp. 50-52.
[Selfridge’s three-person, envy-free protocol. Spanier-Dubins allocation. An envy-free Stromquist allocation
is automatically undominated.]

George Gamow & M. Stern, Puzzle-Math, Viking, New York, 1958.

Martin Gardner, Fair division, in aha! insight, W. H. Freeman, 1978, pp. 123-124. [describes the “envy-
free” problem.]

George Gamow & M. Stern, Puzzle-Math, Viking, New York, 1958.
Theodore P. Hill, Determining a fair border, Amer. Math. Monthly, 90(1983) 438—442.

Theodore P. Hill, A sharp partitioning-inequality for nonatomic probability measures based on the mass
of the infimum of the measures, Probab. Theory Related Fields, 75(1987) 143-147.

Theodore P. Hill, Partitioning general probability measures, Ann. Probab., 15(1987) 804-813.
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Theodore P. Hill, A proportionality principle for partitioning problems, Proc. Amer. Math. Soc.,103(1988)
288-293.

Theodore P. Hill, Partitioning inequalities in probability and statistics, Proc. Seattle Conf. Inequal. Probab.
Statist., IMS Lecture Notes, 1991,

Theodore P. Hill, Fair-division problems (1992 preprint)

B. Knaster, Sur le probléme du partage pragmatique de H. Steinhaus, Ann. Soc. Polon. Math., 19(1946)
228-230. [Says Steinhaus proposed the problem in a 1944 letter to Knaster. Outlines the Banach & Knaster
method of one cutting 1/n and each being allowed to diminish it — last diminisher takes the piece. Also shows
that if the valuations are different, then everyone can get > 1/n in his measure. Gives Banach’s abstract
formulations.]

H. Kuhn, On games of fair division, in Martin Shubik (ed.) Essays in Mathematical Economics, Princeton
Univ. Press, 1967, pp. 29-37.

J. Legut, The problem of fair division for countably many participants, J. Math. Anal. Appl., 109(1985)
83-89.

J. Legut, Market games with a continuum of indivisible commodities, Internat. J. Game Theory, 15(1986)
1-7.

J. Legut, A game of fair division with a continuum of players, Collog. Math., 53(1987) 323-331.
J. Legut, A game of fair division in the normal form, Collog. Math., 54(1988) 179-184.

J. Legut, Inequalities for a-optimal partitioning of a measurable space, Proc. Amer. Math. Soc., 104(1988)
1249-1251.

J. Legut, On totally balanced games arising from cooperation in fair division, Games Econ. Behavior,
2(1990) 47-60.

J. Legut & M. Wilcznski, Optimal partitioning of a measurable space, Proc. Amer. Math. Soc., 104(1988)
262-264.

J. Legut, J. A. M. Potters & S. H. Tijs, Economies with land: a game theoretic approach, Games Econ.
Behavior, 4{1992)

S. X. Levmore & E. E. Cook, Super Strategies for Puzzles and Games, Doubleday, Garden City NY,
pp- 47-53.

A. A. Liapounoff, Sur les fonctions-vecteurs complétement additives, Izv. Akad. Nauk USSR, 4(1940)
465-478; MR 2, 315e.

A. A. Liapounoff, Sur les fonctions-vecteurs complétement additives, Jzv. Akad. Nauk USSR, 10(1946)
277-279; MR 8,;'157b. : : T

Kevin McAvaney, Jack Robertson & William Webb, Ramsey partitions of integers and fair division,
Combinatorica, 12(1992) 193-201.

Jerzy Neyman, Un théoréme d’existence, C.R. Acad. Sci. Paris, 222(1946) 843-845.

Jerzy Neyman & E. Pearson, On the problem of the most efficient tests of statistical hypotheses, Philos.
Trans. Roy. Soc. London Ser. A, 231(1933) 289-337.

D. Olivastro, Preferred shares, The Sciences, Mar-Apr 1992, 52-54.
D. Olivastro, Reply to letter of Ralph G. Ranney, The Sciences, Jul-Aug 1992, 52.
R. Oskui, Dirty work problem, (1992 preprint)

K. Rebman, How to get (at least) a fair share of the cake, in Ross Honsberger, Mathematical Plums,
Math. Assoc. Amer., 1979, 22-37.

J. M. Robertson & W. A. Webb, Minimal number of cuts for fair division, Ars Combin., 31(1991) 191-197.
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J. M. Robertson & W. A. Webb, Approximating fair division with a limited number of cuts, (1992
preprint)

J. L. Selfridge, Four envy-free glasses of wine, MS dated 92-06-11; see also David Gale, Mathematical
Entertainments, Math. Intelligencer, Dec. 1992.

H. Steinhaus, Remarques sur le partage pragmatique, Ann. Soc. Polon. Math., 19(1946) 230-231. [Says
the problem isn’t solved for irrational people and that Banach & Knaster’s method can form a game.]

H. Steinhaus, The problem of fair division, Econometrica, 16#1(Jan 1948) 101-104. [This is a report of
a paper given on 47-09-17. Gives Banach & Knaster’s method.]

Hugo Steinhaus, Sur la division pragmatique, Econometrica (supplement) 17(1949) 315-319. [attributes
problem to Banach & Knaster.]

H. Steinhaus, Mathematical Snapshots, 31d edition, Oxford Univ. Press, 1969.

Arthur H. Stone & J. Tukey, Generalized “sandwich” theorems, Duke Math. J., 9(1942) 356-359.
Walter Stromquist, How to cut a cake fairly, Amer. Math. Monthly, 87(1980) 640-644.

Walter Stromquist, Addendum to “How to cut a cake fairly”, Amer. Math. Monthly, 88(1981) 613-614.

Walter Stromquist & Douglas R. Woodall, Sets on which several measures agree, J. Math. Anal. Appl.,
108(1985) 241-248.

K. Urbanik, Quelques théorémes sur les mesures, Fundamenta Math., 41(1954) 150-162.

William A. Webb, A combinatorial algorithm to establish a fair border, Furop. J. Combin., 11(1990)
301-304.

William A. Webb, An algorithm for a stronger fair division problem, (1992 preprint)

D. Weller, Fair division of a measurable space, J. Math. Econ., 14(1985) 5-17.

Douglas R. Woodall, Dividing a cake fairly, J. Math. Anal. Appl., 78(1980) 233-247.

Douglas R. Woodall, A note on the cake division problem, J. Combin. Theory Ser. A, 42(1986) 300-301.

92:12 (Andrew Granville) Find examples of
1 1 1
2 +y? =2 with —-+-+-<1
p q T

other than 234 17 = 32 and 73 + 132 = 2°. [Blair Kelly III gave 2° + 72 = 3* and Reese Scott
173 + 27 = 712

Find examples of coprime triples (A, B,C') for which there are at least 3 solutions of
.1 1 1
Az? + By + Cz" = 0 with — + — 4+ = < 1 and |z|, |y[, |2] > 2
p qg T
Find a solution to
Az? 4+ By® = C2° in polynomials z(A, B,C), y(4, B,C), 2(A, B,C)

such that Az, By, C'z have no common factors.

92:13 (Gene W. Smith) Find examples of the Galoisean inequation

Gal (X(X —2n— 1)"(X +2r+ 1)" — (X — )X +n?)) [/ Q1)) # Sons1
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For example, n = 1 gives A3 and n = 3 gives PG L3(2).

Or, find out when the discriminant of
(X(X =2n—1)"(X +2n+1)" —t(X — 1)*(X + n?), X)
is a square polynomial in t.

92:14 (Richard Guy) It is well known that the rational points on an elliptic curve of rank
one (or more) are dense, at least on the infinite branch. So, if P is a generator, values of n
can be found such that (n 4 1)P is arbitrarily close to P, so that n is a “near period” for
the points. Several examples have been found where comparatively small n give remarkably
good near periods. These are associated with large partial quotients in the continued fraction
expansion of numbers associated with the curve. What is going on? Presumably something
not unrelated to Stark’s paper nor to Method 3 of Zagier’s paper.

Harold M. Stark, An explanation of some exotic continued fractions found by Brillhart, in Atkin & Birch,
Computers in Number Theory (Proc. S.R.C. Atlas Symp., Oxford 1969), Academic Press, 1961, 21-35.

Don Zagier, Large integral points on elliptic curves, Math. Comput., 48(1987) 425-436.

92:15 (Gerry Myerson) Comparison of Giuga’s conjecture (see 92:07 above) with Wilson’s
theorem prompts us to let F,(zy,...,2,_1),n =1, 2, ... be a “coherent family” of symmetric
functions of degree n —1, e.g. F, = 7,2, -z,_; (Wilson’s theorem), F, = P 44 znT]
(Giuga’s conjecture), or F,, = E;.’;ll o) z7~%zy, or ... Is there a number A, depending on
the family, but not on n, such that F,(1,2,...,n — 1) = Amod n if and only if n is prime?

What happens if we ask only that F,, be invariant under the cyclic group?

92:16 (Yang Wang - from my notes) If 0 € S, ged(S) = 1 and Tsn = {XN,a;2a; € S},
how many consective integers can T’s v contain? E.g., if § = {0, p, 2¢} then there are quite a
lot.

92:17 (Reese Scott via Hugh Edgar) Theorem: If p, ¢ are given primes, h is fixed and
P™ — ¢" = 2" has two solutions with m, n positive integers, then |27 — 2, ¢*|p? — p, 2|h,
2"|(p — 1) and 2***|(¢ - 1).

Show that these conditions exclude all possibilities.

Remarks: Reese Scott writes that if the equation has two solutions, then ¢*|(27 — 2),
and, as it has only one for ¢ = 1093 or 3511, then for two solutions g > 3-10°. Cao & Wang
have shown that if there are two solutions, one of them has m = 1. For latest results see his
J. Number Theory paper, especially Theorems 1 & 6.

Cao Zhen-Fu, Hugh Edgar’s problem on exponential Diophantine equations (Chinese), J. Math.
(Wuhan), 9(1989) 173-178; MR 90i:11035.

Cao Zhen-Fu & Wang Du-Zheng, On the Diophantine equation a® — §¥ = (2p)* (Chinese).
Yangzhou Shiyuan Xuebao Ziran Kezue Ban, 1987 no. 4 25-30; MR 90c¢:11020.

Reese Scott, On the equations p* — ¥ = ¢ and a® +b¥ = ¢*, J. Number Theory, 43(1993) 153-165.
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92:18 (Harold Davenport via Andrew Granville) For any group G find n(G), the length of
the longest sequence of (not necessarily distinct) elements of G' such that the products of all
subsequences are different from the identity.

1. G=Z [p"ZXZ[pZx---XZ[p™Z
then n(G) = (p* - 1)+ (p* - 1) +---+ (p™ - 1)

2. 1f G=Cp XCpy X - X Cpy,
then n(G) > (m; — 1)+ (my — 1)+ --- 4+ (my — 1)

G
3. and n(G) < my(1+1In |——l)
my
Improve 3. It’s known that there is a G giving strict inequality in 2.

Variant in class groups. Consider G = C/C? where C is the class group of the pth
cyclotomic field. Given an ideal I, let

I;={I":0€T}

Find as small a subset as possible of I'y, say {I,...,I;}, with I}* - - I principal. Trivially
we can take t = p-rank of C/CP + 1, but can we do better, given that our set is so large?

92:19 (Erdés & Heilbronn via John Selfridge) (C15 in UPINT) E. & H. acked for the largest
number k = k(m) of distinct residue classes, modulo m, so that no subset has sum zero. For

example, the set
1, -2, 3,4,5,6

shows that £(20) > 6, and in fact equality holds. The pattern of this example shows that

E>|(-14+vV8m+9)/2] (m>5)

Equality holds for 5 < m < 24. However, S. observes that if m is of the form 2(1* + 1+ 1),
the set

1,2, ...,01-1, 1 %m, sm+1, ..., im+1
implies that
In fact he conjectures that, for any even m, this set or the set with I deleted always gives the
best result. For example, £(42) > 9.

On the other hand, if p is a prime in the interval
Lh(k+1) < p < 3(k+ D)(k+2)
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he conjectures that k(p) = k, where the set can be simply
Ly 25 suuy &

The case k(43) = 8 was confirmed by Clement Lam, so k is not a monotonic function of m.

The only case where a better inequality is known than k > |v/2m — 3] is k(25) >
V930 —1 =7, as is shown by the set 1, 6, 11, 16, 21, 5, 10. If m is of the form 251(1+ 1)/2
and odd, then it is possible to improve on the set 1, —2, 3, 4, ..., but if m is of that form
and even, then the construction already given for m even is always better.

Is k= [(=1++/8m +9)/2] for an infinity of values of m?

For which values of m are there realizing sets none of whose members are prime to m?
For example, m = 12: {3,4,6,10} or {4,6,9,10}. Is there a value of m for which all realizing
sets are of this type?

E. & H. proved that if a, a,, ..., ax, k > 3(6p)'/?, are distinct residues modp, where
p is prime, then every residue modp can be written in the form Zlee,-ai, € = 0 or 1.
They conjectured that the same holds for k& > 2,/p and that this is best possible and Olsen
proved this. They further conjectured that the number, s, of distinct residues of the form
a; +aj, 1 << j <k, is at least 2k — 3. [By coincidence, on return from Corvallis, my
accumulation of mail contained a submission on this problem (for possible publication in
the Unsolved Problems section of the MONTHLY) by Redseth. The rest of this paragraph is
correspondingly amended, and his bibliography used to amplify my own.] In this connexion
Rgdseth has used Pollard’s extension of the Cauchy-Davenport Theorem to show that if
m = p, a prime, then s > min(p,2k — v/4k + 1) and a deep result of Freiman to show that
there is an absolute constart ¢ such that if p > ck, then s is indeed > 2k — 3.

W. Brakemeier, Ein Beitrag zur additiven Zahlentheorie, Dissertation, Tech. Univ. Braunschweig 1973.

W. Brakemeier, Eine Anzahlformel von Zahlen modulo n, Monatsh. Math., 85(1978) 277-282.

A. L. Cauchy, Recherches sur les nombres, J. Ecole Polytech., 9(1813) 99-116.

H. Davenport, On the addition of residue classes, J. London Math. Soc., 10(1935) 30-32.

H. Davenport, A historical note, J. London Math. Soc.,.22(1947) 100-101.

P. Erdés, Some problems in number theory, in Computers in Number Theory, Academic Press, London
& New York, 1971, 405-413.

P. Erdés & H. Heilbronn, On the addition of residue clesses mod p, Acta Arith., 9(1969) 149-159.

G. A. Freiman, Foundations of a Structural Theory of Set Addition, Transl. Math. Monographs, 37(1973),
Amer. Math. Soc., Providence RI.

Henry B. Mann & John E. Olsen, Sums of sets in the elementary abelian group of type (p,p), J. Combin.
Theory, 2(1967) 275-284.

John E. Olsen, An addition theorem modulo p, J. Combin. Theory, 5(1968) 45-52.
John E. Olsen, An addition theorem for the elementary abelian group, J. Combin. Theory, 5(1968) 53-58.

J. M. Pollard, A generalisation of the theorem of Cauchy and Davenport, J. London Math. Soc., 8(1974)
460-462.

J. M. Pollard, Addition properties of residue classes, J. London Math. Soc., 11(1975) 147-152.
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U.-W. Rickert, Uber eine Vermutung in der additiven Zahlentheorie, Dissertation, Tech. Univ. Braun-
schweig 1976.

Qystein J. Rgdseth, Sums of distinct residues mod p, Preprint, Dec. 1992.
C. Ryavec, The addition of residue classes modulo n, Pacific J. Math., 26(1968) 367-373.
E. Szemerédi, On a conjecture of Exdés and Heilbronn, Acta Arith., 17(1970-71) 227-229.
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