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COMMENTS ON EARLIER PROBLEMS

82:16 (= 366) (J. Martin Borden, via Kevin McCurley) Given positive integers d, n;, n,
with n; L n,, can one always find non-negative integers d,, d, with d; +d, = d and d, L nq,
dy Lmy?

1983 Comments: Peter Montgomery gave the counter-example d = 16, n; = 273,
ny, = 110. Mike Filaseta gave a list of d yielding counterexamples and suggested that there
were infinitely many. Lagarias suggested it may be true if n; < d. In a 83-10-26 letter
Sitarama Chandra Rao, denoted the number of representations of d = d; + d, by R(d) and
proved

TuHEOREM 1. For all d, |R(d) — d¢(K)/K| < 1+ o(K) where K = nyn,y, ¢ is Euler’s
totient formula and (/') is the sum of the positive divisors of K .

COROLLARY. Given ny, ny with n; L n,y, then R(d) > 0 for all d > K(1+ o(K))/p(K).

THEOREM 2.
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where a, = e?*"/a 3. = €*"/% and pu is the Mdbius function.

1984 Comments: Mike Filaseta corrected his list of counterexamples to (16) 22, 34, 36,
46, 56, 64, 66, 70, .... It was again suggested that there are infinitely many counterexamples,
but none with n; < d. Erdos noted that the first part of the statement is a result in

P. Erdés & W. T. Trotter, When the cartesian product of directed cycles is hamiltonian, J. Graph
Theory, 2(1978) 137-142; MR 80e:05063

and that the sieve of Eratosthenes suffices to prove the second part when d is sufficiently large.
In fact the Brun sieve shows that for some constant 1 > ¢ > 0 and for d sufficiently large,
there are no counterexamples for which n;n, < e? . Mike Filaseta noted that the second part
can be settled for all d in a rather simple way: indeed there are no counterexamples with
min(ny,n;) < d. To see this, suppose n, < d and that n, is squarefree. Let d; = ny/(d,n,)
and dy = d — d;. Then it can be shown that d; L n; and d; L n,. He also noted that if
the question is asked for any integers, possibly negative, then there are no counterexamples.
Related open questions are:

84:01 (Paul Erdés & Mike Filaseta) In the previous problem, what is the density of the d
which provide counterexampls? Are there infinitely many such odd d? [d = 15395 may be
the least; see the Erd&s-Trotter paper quoted above.

1985 Comments: Mike Filaseta notes that the original problem is equivalent to: are
there positive integers a, b with b > a 4+ 1 such that every integer between a and b has a
factor in common with either a or b? Thai is, a counterexample to one problem gives rise
to counterexamples to the other. For example, Peter Montgomery’s original example with
d =16, n; = 273, n, = 110 corresponds to the example (a,b) = (2184,2200) in the present
question (b — a = 16). Compare



P. Erdés & J. L. Selfridge, Complete prime subsets of consecutive integers, Proc. Manitoba Conf.
Numer. Math., 1971, Congressus Numerantium V, pp. 1-14. MR 49 #2597.

1993 Comments: Selfridge supplies a piece of paper with d = 15493 and d = 903 on
it; I will get him to interpret. Should 15493 be 15395? Evidently d = 903 is a smaller odd
counterexample. He refers to

David L. Dowe, On the existence of sequences of co-prime pairs of integers, J. Autral. Math. Soc.
Ser. A, 47(1989) 84-89; MR 90e:11005

85:13 (J. R. Buchi) Let n > 5 and let z} < ... < 22 be squares of positive integers. If
the n — 2 second differences z7,, — 222, | + z? are all equal to 2, must the z; be consecutive
integers?

Remark (1986) There is a paper,

Duncan A. Buell, Integer squares with constant second difference, Math. Comput., 49(1987) 635-644.
and John Leech quotes

D. Allison, On square values of quadratics, Math. Proc. Cambridge Philos. Soc., 99(1986) 381-383.
who rediscovers [Leech, The location of four squares in an arithmetic progression, with some
applications, in Computers in Number Theory (Atlas Sympos. 1969), 83-98; MR 47 #4913]
an infinity of symmetrical sets of eight squares with constant second differences; fails to find
symmetrical sets of seven (proved impossible by Pocklington); and does some “interesting
work on unsymmetrical sets.”

Remark (1987) Leech writes (87-07-17): consider 4, 14242, 4a?, 14642, 4+ 8a2. We want
14 2a® =0, e, a, =2, 12, 70, 408, ..., 6a,_; — a,_». Can we also make 1 + 642 = O7
This requires a, = 2, 20, 198, 1960, ..., 10a,_, — a,_-. These sequences probably have
no common term other than 2. But there are infinitely many rational a with 1 + 2¢2 = a,
1 + 6a®> = O, since z? + 2y%, z° 4+ 6y? are concordant forms (Dickson’s History, Vol. 2,
pp- 472fF).

Richard Pinch observes that the general technique given in his paper,

Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc., 103(1988) 35-46,

will answer Leech’s question, and that he should be able to do this quite quickly when he is
next within reach of a computer.

Remark (1993): It evaded his reach until

Richard G. E. Pinch, Squares in quadratic progression, Math. Comput., 60(1993) 841-845

where he finds the 72 nontrivial 4-term progressions with a term less than 10002, but no
5-term ones.



91:24 (Dick Katz) Inscribe an equilateral triangle in a circle of unit radius. Inscribe a circle
in the triangle. Inscribe a square in the second circle, and inscribe a circle in the square.
Inscribe a regular pentagon in the third circle, and continue indefinitely. The radii of the

circles converge to
(o]
[T cos
cos —.
k
k=3

What is this number?

1992 Comments (Richard McIntosh): (a) Abramowitz & Stegun, p. 75, give

Ecos%:ﬁﬁ(l—m).

k=3n=1

(b) Since %ln cosz = —tanz can be expanded as a power series involving Bernoulli
numbers, it follows that
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Using MAPLE we get [[[Z5cos { =
0.11494 20448 53296 20070 10401 57469 59874 28307 95337 20086 35168 44023 39651 89660 128253530511779. ...

smx

(¢) Since [T;%, cos o7 = , it follows that if we use only 2"-gons (n = 2, 3, 4, ...), then
the radii converge to £

1993 Comment: (Patrick Wahl) The problem goes back to Kepler (1595).



92:12 (Andrew Granville) Find examples of
1 1 1
2?4+ y!=2" with 4+ -4+-<1
p qg T
other than 2° + 17 = 3% and 7% + 13 = 2°. [Blair Kelly III gave 2° 4+ 72 = 3% and Reese Scott

178 + 27 = 712)]

Find examples of coprime triples (A, B, C') for which there are at least 3 solutions of
o1 1 1
AzP 4+ By + Cz" = 0 with — + -+ = < 1 and |z}, |y], |2] > 2
p q T

Find a solution to
Az? + By® = C2° in polynomials z(A,B,C), y(A,B,C), z(A,B,C)

such that Az, By, Cz have no common factors.

Remark: Gerry Myerson suggests that it was intended that z, y, z be relatively prime
in order to avoid 2° + y7 = 2* with = (n® = 1)%, y = n®> — 1, z = n(n? — 1) and, more
generally, ¢ = 0" — 1, s any multiple of 7, p = s 4 1, ¢ any divisor of s, y = 2°/¢, z = bz*/"
gives a¥ 4+ y? = 2. Also 2° 4 887 = 6°; 22° + 33° = 6655°. [The proposer concurs.]

Andrew Granville also gave 3° + 11* = 1222, Peter Montgomery reports that extraor-
dinarily large solutions have been found recently by Beukers and Zagier: 177 4+ 762713 =
210639287, 1414° + 2213459% = 657, 9262 + 153122832 = 1137, 438 + 962223 = 300429072,
338 4 15490342 = 15613°.



PROBLEMS PROPOSED 93-12-18 & 21

93:01 (Mike Filaseta) p(n) is the usual unrestricted partition function. Is the set
{q : ¢ prime,An € Z* > ¢|p(n)} of primes which divides the values of the partition function
infinite? Does it include all primes?

Remark: Odlyzko and the proposer later supply the following references:

A. Schinzel & E. Wirsing, Multiplicative properties of the partition function, Proc. Indian Acad.
Sci. (Math. Sci.) 97(1987) 297-303.

P. Erdés & A. Ivié, The distribution of values of a certain class of arithmetic functions at consec-
utive integers, in Papers from the conference held in Budapest, July 20-25, 1987, edited K. Gyory &
G. Halasz, North-Holland, Amsterdam, Collog. Math. Soc. Jdnos Bolyai, 51(1990) 45-91.

93:02 (Mike Filaseta) Is
(1. + 1)2n _ zZn =1

x

irreducible over the rationals for every positive integer n?

Remarks: Yes, when n is prime. Checked for n < 90 by Mathematica®. Connected to
a conjecture of Mirimanoff.

93:03 (John Conway & Andrew Odlyzko) Call d a high-jumper if d occurs most frequently
as the difference of consective primes < 2 for some z (there may be several high-jumpers for
a given z).

Example: z = 11: 2,3, 5, 7, 11 gives 1, 2, 2,4, so C(11) = {2}.

Conjecture: the only high-jumpers are 4 and the prime factorials 2, 6, 30, 210, 2310, ... .
Can one prove that high-jumpers tend to infinity? That any prime p divides all high-jumpers
for z > z¢(p)?

Remarks: A paragraph of UPINT2 reads as follows:

Victor Meally used the phrase prime deserts. He notes that below 373 the commonest
gap is 2; below 467 there are 24 gaps of each of 2, 4 and 6; below 563 the commonest gap is
6, as it is between 10* and 10'* 4+ 10® and probably also from 2 to 10'%. He asks: when does
30 take over as the commonest gap?

Dan Goldston provides the references:
Harry Nelson, Problem 654, J. Recreational Math., 10(1977-78) 212.

P. Erdés & E. G. Straus, Remarks on the difference between consecutive primes, Elem. Math.,
35(1980) 115-118.

Erdos & Straus assumed a version of the Hardy-Littlewood prime k-tuple conjecture to
show that high-jumpers go to infinity. The proposers can almost certainly show that the
conjecture is true if they assume a uniform version of the k-tuple conjecture. This has not
been written down yet, though.



93:04 (Neville Robbins) Find a formula for the number of self-conjugate partitions.

Remark: It is easy to see via the Ferrers’s diagram that this is the same as the number
of partitions into distinct odd parts, so that the generating function is [Jgoo(1 4 ¢2*+1).

On removing the Durfee square, the largest square that can be drawn in the top left
corner of the diagram, it is seen that the number of self-conjugate partitions of n is

Lvn] 1
Yoo (5 (n — d2)>
d=nmod?2
where p(n) is the unrestricted partition function, so that formulas will be of the same type
as for that function, i.e., good asymptotic ones.

93:05 (Graeme Cohen via Hugh Edgar) Prove that if n(2n — 1) is perfect, then n is even.

Remark: Graeme Cohen has proved that if the odd perfect number N = p°L? = n(2n—1)
where the prime p /L and p = a = 1 mod 4 then if ¢ is a prime divisor of N and ¢ = 3 mod 8,
then (g—) = —1. Also p & {73.89,129,233,257,281}.

93:06 (David, Jonathan & Peter Borwein & Roland Girgensohn, via Hugh Edgar — two
problems from a manuscript "On a Conjecture of Giuga”) (a) Investigate the set of positive
integers (generalized Carmichael numbers) n = []p® for which (p°® — 1)|(n — 1) for each
component, p°, of n. Examples are 12025, 13833, 35425, 54145. Are there infinitely many?
It seems that the methods of Alford, Granville & Pomerance probably won’t help.

(b) Characterize those positive integers n such that

SL-T2

peiin 1 pelin P

Is a nonnegative integer. Examples of composite Kirchhoff numbers are 30, 858, 1722,
66198. Is there an odd composite Kirchhoff number? If so, it has at least 9 prime factors.

93:07 (Denis Hanson via Richard McIntosh) Give an elementary proof of

SO,

k=0 (gz)

What about

3

(™) (*+)

M\ k)

k=0 ; )

Remark: A proof was given by Peter Montgomery using the generating function for the

Catalan numbers. He also notes that it can be shown by induction on m that for 0 < m < n,

the partial sums
+1) ()’

i =2m+ 1-=

= Gy (2m)




Now set m = n. But neither method seems to work if r # 1.

It would be nice to see a purely combinatorial (counting) proof.

93:08 (Gerry Myerson) If p; is the ith prime, for which = is

4H7)f+1
i=1
a square?
NOTE:n=1 4-24+1=3* n=2 4-2-34+41=5% n=3 4-2-3-5+1=11%
n=4 4-2-3-5-7+1=29% n=7 4-2-3-5-7-11-13-17+ 1 = 1429,

The proposer found no others up to n = 25, the editor extended this to n = 35 and
on 94-01-17 the proposer quoted David Bailey: if P(z) is the product of the primes not
exceeding z (so, e.g., P(10) = 210), then 4P(z) + 1 is not a square for any 2 between 19 and
23000. This may be a good place to quote Andrew Granville who in turn quotes Fermat:

In the 17th century there were, as we view it today, two meanings to induction. Due
to a lack of good notation, and even a clear notion of what a proof was, many “proofs”
actually were ‘doing’ the first few cases and then extrapolating that all cases would follow
in similar fashion. Thus, what was known (by Descartes) as “complete” induction was
one where you could clearly see how to deduce the (n+1)st case from the nth (given, say,
the deduction of the 3rd case from the 2nd case as an example). Whereas “incomplete”
induction was where there was no clear procedure — just wishful thinking from the first
few cases (i.e. ‘the law of small numbers’).

In 1656 Wallis used such incomplete ‘induction’ in his “Arithmetica Infinitorum”. In
1657 Fermat, while praising some of Wallis’s work, wrote (translating from the French):

“One might use this method if the proof of some proposition were deeply concealed
and if, before looking for it, one wished first to convince oneself more or less of its
truth; but one should place only limited confidence in it and apply proper caution.
Indeed, one could propose such a statement, and seek to verify it in such a way, that
it would be valid in several special cases but nonetheless false and not universally
true, so that one has to be most circumspect in using it; no doubt it can still be of
value if applied prudently, but it cannot serve to lay the foundations of some branch
of science, as Mr. Wallis seeks to do, since for such a purpose nothing short of a
demonstration is admissible.”

Nicely put, don’t you think!

93:09 (Gerry Myerson) Is it true that for n > 1 there exist disjoint sets A, B such that
AUB =1{2,3,...,pn} and [[,c 4 + [],ep is prime? What about [[, 4 —[[,ep? What about
both being prime?

Eg,2-3+1=7&2-3—-1=25areprime,2-54+3=13& 2-5—3 = 7 are prime,
5.74+2-3=41&5-7-2-3 =29 areprime, 7-114+2-3-5=107& 7-11—-2-3-5 =47
are prime, 7-11-13+2-3-5=1031& 7-11-13-2-3-5 = 971 are prime.



93:10 (Gerry Myerson) Given k, let n = n(k) be the smallest integer > k such that k! divides
(})- How does n(k) grow?

Notes: 1. It is easy to show that n(k) < k- k! 2. n(k) is not monotone, n(1) = 1,
n(2) =4, n(3) = 9, n(4) = 33, n(5) = 28, n(6) = 165, n(7) = 54, n(8) = 1029, n(9) = 40832.
93:11 (Gerry Myerson) Given a non-constant polynomial f : Z — Z and an integer a,, define
a sequence {a,} by a,41 = f(a,), n = 1,2,.... Assume that this sequence is unbounded.

(a) Do there exist f and a, such that every a, is prime?

(b) Do there exist f and a; for which you can prove that infinitely many of the a,,
are prime?

Note: Among the sequences that can be obtained in this way are the Fermat numbers
F, = 2?" 4+ 1 and the Mersenne numbers M, = 2" — 1.

Remark: (Peter Montgomery) If k£ > 0, then we can use f(z) = 2+ k and ged(ay, k) = 1
in (b). If f exists (in (a) or (b)), then there are infinitely many integers & such that f(k) is
prime. The only known polynomials with this property are linear polynomials.

93:12 (Richard Guy) The elliptic curve y?> + y = 2® — 2 has the smallest conductor, 37,

among rank 1 curves. The fraction
/‘” dz //°° dz
o Yy -0 Y

(if I've got the equation in the right form) of the branch between the generator (0,0) and the
point at infinity is

3+ 4+ 1+ 14 5+ 2+ 168+ 46793+ 1+ 7+
Explain the large partial quotients.
Remark: This is a specific instance of Problem 92:14.

93:13 (Reese Scott via Andrew Granville) The cardinality of the set
{(z,9,2) : 2°+y* = 2*,ged(z,y,2) = 1, # of prime factors of zyz is < 5}

is finite. Can 5 be replaced by 6 or 77

Remark: (Peter Montgomery) If k£ > 7 is of the form 273°5'p where p is 1 or prime and
30k £ 1 and 900k? + 1 are simultaneously prime, then z = 60k, y = 900k2 — 1, z = 900k> + 1
contain just seven distinct prime factors. E.g., k = 6, k = 19.

Remark: (Kevin Ford) There are just 30 such triples with k& < 5, the largest being
(375,7808,7817).

We consider the general form of a primitive pythagorean triple (2pg, p® — ¢, p* + ¢?) where
p and ¢ are coprime positive integers of opposite parity.



Using Theorem 10.4 from Sieve Methods by Halberstam & Richert, I can prove that there
are infinitely many triples with & < 19. This is accomplished by setting ¢ = 1 and sieving
the polynomial p(p+ 1)(p— 1)(p? + 1). The primes 2, 3 and 5 always divide this polynomial,
so they must be excluded from the sieve.

The following heuristic shows that there are probably infinitely many such triples with
k = 6. Let p = 2%, ¢ = 3°5° < p/2. The probability that p + ¢q, p — ¢ and p? + ¢* are
simultaneously prime is > 1/a®. Summing over b, ¢, a yields a divergent series. A computer
search using PARI yielded 49 triples with p = 2%, ¢ = 3%, 5° (without the condition ¢ < p/2)
and p,q < 108, The one with largest 2 corresponded to (a,b,c) = (40,24,9). The triple is
z = 606512811305166962688000000000, y = 304284832292768849232879419897559449,
z = 304284832295186700872108678246971801.

93:14 (Andrew Granville) Are there addition chains with {(4n) = [(2n) = I(n)? And if so,
then with [(8n) = I(4n) = I(2n) = (n) etc.?
[For background to this and problem 93:15 we quote from C6 of UPINT2:
An addition chain for n is a sequence 1 = ag < a1 < ... < a, = n with each member after the
zeroth the sum of two earlier, not necessarily distinct, members. For example
1, 141, 242, 442, 642, 846 and 1, 141, 242, 442, 4+4, 846

are addition chains for 14 of length » = 5. The minimal length of an addition chain for n is denoted
by I(n).

The main unsolved problem is the Scholz conjecture
i (2" —=1)<n—-1+41(n) ?

It has been proved for n = 2%, 29 4+ 2% 29 4 20 4 9¢ 94 4 96 4 9¢ 4 94 by Utz, Gioia et al, and Knuth,
and demonstrated for 1 < n < 18 by Knuth and Thurber. Brauer proved the conjecture for those n
for which a shortest chain exists which is a Brauer chain, that is one in which each member uses
the previous member as a summand. The second of the examples is not a Brauer chain, because the
term 4-+4 does not use the summand 6. Such an n is called a Brauer number. Hansen proved that
there are infinitely many non-Brauer numbers, but also that the Scholz conjecture still holds if n has
a shortest chain which is a Hansen chain, that is one for which there is a subset H of the mermnbers
such that each member of the chain uses the largest element of H which is less than the member. The
second example is a Hansen chain, with H = {1, 2,4, 8}. Knuth gives the example

1,2,4,8,16,17,32,64,128,256,512,1024, 1041, 2082, 4164, 8328, 8345, 12509

of a Hansen chain (H={1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1041, 2082, 4164, 8328,
8345}) for n = 12509 which is not a Brauer chain (32 does not use 17) and no such short
Brauer chain exists for n = 12509.

Are there non-Hansen numbers?

It is clear that {(2n) < {(n) + 1. That strict inequality is possible was shown by Knuth
with [(382) = 1(191) = 11. The smallest even n with [(2n) = [(n) is 13818, given by Thurber,
who also noticed the odd adjacent pair 22453, 22455.

10



Walter Aiello & M. V. Subbarao, A conjecture in addition chains related to Scholz’s conjecture. Math.
Comput., 61(1993) 17-23; MR 93k:11015.

A. T. Brauer, On addition chains, Bull. Amer. Math. Soc., 45(1939) 736-739.

A. Cottrell, A lower bound for the Scholz-Brauer problem, Abstract 73T-A200, Notices Amer. Math. Soc.,
20(1973) A-476.

Paul Erdés, Remarks on number theory III. On addition chains, Acta Arith., 6(1960) 77-81.
R. P. Giese, PhD thesis, University of Houston, 1972.

R. P. Giese, A sequence of counterexamples of Knuth’s modification of Utz’s conjecture, Abstract 727T-
A257, Notices Amer. Math. Soc.. 19(1972) A-688.

A. A. Gioia & M. V. Subbarao, The Scholz-Brauer problem in addition chains II, Congr. Numer. XXII,
Proc. 8th Manitoba Conf. Numer. Math. Comput. 1978, 251-274; MR 80i: 10078; Zbl. 408.10037.

A. A. Gioia, M. V. Subbarao & M. Sugunamma, The Scholz-Brauer problem in addition chains. Duke
Math. J., 29(1962) 481-487; MR 25 #3898.

W. Hansen, Zum Scholz-Brauerschen Problem, J. reine angew. Math., 202 (1959) 129-136; MR25 #2027.
Kevin Hebb, Some problems on addition chains, thesis, Univ. of Alberta, 1974.

A. M. Il'in, On additive number chains (Russian), Problemy Kibernet., 13 (1965) 245-248.

H. Kato, On addition chains. PhD dissertation, Univ. Southern California, June 1970.

Donald Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading MA, 1969, 393-422.
D. J. Newman, Computing when multiplications cost nothing, Math. Comput., 46(1986) 255-257.
Arnold Scholz, Aufgabe 253. Jber. Deutsch. Math.- Verein. II, 47(1937) 41-42 (supplement).

Rolf Sonntag, Theorie der Addition Sketten, PhD Technische Universitat Hannover, 1975.

K. B. Stolarsky, A lower bound for the Scholz-Brauer problem, Canad. J. Math., 21(1969) 675-683: MR
40 #114.

M. V. Subbarao, Addition chains — some results and problems, in R. A. Mollin (ed.) Number Theory and
Applications, NATO ASI Series. Kluwer, Boston, 1989, pp. 555-574; MR 93a:11105.

E. G. Straus, Addition chains of vectors, Amer. Math. Monthly, 71(1964) 806-808.

E. G. Thurber, The Scholz-Brauer problem on addition chains, Pacific J. Math., 49(1973) 229-242: MR
49 #7233.

E. G. Thurber, On addition chains I(mn) < I(n) — b and lower bounds for ¢(r), Duke Math. J., 40(1973)
907-913.

E. G. Thurber, Addition chains and solutions of I(2n) = I(n) and (2" — 1) = n+1(n) — 1, Discrete Math.,
16(1976) 279-289; MR 55 #5570; Zbl. 346.10032.

W. R. Utz, A note on the Scholz-Brauer problem in addition chains, Proc. Amer. Math. Soc., 4(1953)
462-463; MR 14, 949.

C. T. Wyburn, A note on addition chains, Proc. Amer. Math. Soc., 16(1965) 1134.]
93:15 (Edward Thurber) Is {(2n) > [(n) for all n? Some related questions are:

(a) For all positive integers t, does there exist an odd positive integer m such that
[(2*'m) = [(2'm) ? Examples with ¢t = 1 are 13818 and 27578.

(b) Is there an adjacent pair n, n + 1 satisfying I(2n) = I(n) and {(2(n+ 1)) = {(n + 1) ?

(c) If h(z) denotes the number of integers n < z such that [(2n) = I(n), then is h(z) =
Qz)?

11



2
(d) If ¢(r) is the 1ezﬁzinteger requiring r steps in a minimal addition chain, is ¢(r +1) <
2¢(r) 7 If e(r 4+ 1) >Ye(r), then if n = ¢(r) it follows that {(2n) = [(n). ¢(11) = 191 and
c(19) = 18287 satisfy [(2n) = I(n).

(e) Is ¢(r) odd for all » 7 [(281) = 10 and (282) = 11; thus, there do exist odd integers
n for which {(n) < {(n+ 1). Does this happen when n = ¢(r) —17?

93:16 (Melvyn Knight) When p = 1 mod 4

—_— 2 —
[(P—?—{) '] = —-1modp and (%)!Eimodp

When is 0 < ¢ < p/2?

Remark: (Andrew Granville) In

L. J. Mordell, The congruence (%1)' = +1 mod p, Amer. Math. Monthly, 68(1961) 145-146; MR
23 #A837; INT R14-41
it is shown that if p = 3mod 4 and p > 3, then (£)! = (~1)* mod p where a = {1 +
h(—p)} mod 2 and h(—p) is the class number of the quadratic field k(/—p). Mordell notes
that this follows from a result of Dirichlet and that Jacobi had conjectured an equivalent
result before the class number formula was known. In

S. Chowla, On the class number of real quadratic fields, Proc. Nat. Acad. Sci. U.S.A., 47(1961),
878; MR 23 #A2413; tNT R14-42

if p = 1mod 4, his the class number of the real quadratic field R(,/p) and € = (t+u,/p)/2 > 1
is its fundamental unit, then ((p — 1)/2)! = (=1)*+Y/2t/2 mod p.

93:17 (Andrew Granville) Find a non-homogeneous irreducible polynomial F(z,y) € Z[z,y]
of degree d > 5 with a lot of rational solutions z,y to F(z,y) = 0.

Remark: The best examples known are y? — A(z —1)(z —2) - - (¢ — d) — 1 with solutions
(1,4£1), (2,4£1), ..., (d,£1), (0,£B) where B? = A(-1)%d!+ 1. Can one get an infinite
sequence of F;(z,y) of degree d; with at least cd? rational points for some constant ¢? You
are not allowed to cheat by using factorable polynomials such as (z — y)(z — 2y).

Andrew Bremner notes that if d is even there are also the solutions (d 4+ 1, £ B).

Remarks by Gene Smith, Peter Montgomery and the proposer imply that one is not
allowed to have examples where ¢ and y may be parametrized in terms of polynomials or
points on some elliptic curve. The curves should be of genus > 2.

93:18 (David Gove) If w is a string of zeros and ones such that for any block B the string
BBB does not appear (e.g., the Morse-Hedlund sequence 01101001100101101001...) does

. s(n) 1
lim —= = -
o n 2

where s(n) is the number of ones in the first n positions of w?

12



93:19 (Jeff Lagarias) Prove or disprove that the lengths of the blocks of consecutive zeros
and ones in the binary expansion of

V2 = 1.011010100000100111100110011001111111001110111100110010010000100. . .

are unbounded. I.e., are there values of n such that the fractional parts, { }, satisfy 0 <
{2"V/2} < € (for a long block of zeros) and 1 — ¢ < {2"v/2} < 1 (for a long block of ones)?

93:20 (Eugene Gutkin via Jeff Lagarias) Let G, be the solutions of tannf = ntan 6 with
0 < ¢ < 7. Determine G, N G,,. (The question arises in studying orbits of billiards with
special properties.)
Remark: (Jeff Lagarias) If we write z = €?*® then
einG _ e—in€ " —1 r—1

tannd = — — = and tanf =
etng + e—an rn + 1 T + 1

Hence the equation tan nf = ntan 6 becomes
(n=1)("" -1)-=(n+1)(z" -2)=0
The left side has a “trivial” factor (z — 1)3, so consider the polynomials

2) = (n—=1)(z""' =1) = (n+1)(z" — )
pﬂ( )_ (:7:—1)3

for n > 1.
Conjecture. p,(z) is irreducible if n is even, and = (z + 1)(irreducible) if n is odd.

Checked by Maple for n < 20. It would imply G, N G,, = {0} if mn = 0 mod 2 and
G, NG, = {0,%71'} ifn=m=1mod 2.

93:21 (Gerry Myerson) (a) Let n lines divide a disk into the maximum possible number of
regions, namely (7) + (}) + (). How large can the smallest region be? [Solving n = 3 is a
nontrivial calculus exercise.]

(b) What’s the largest number of equal-area regions a disk can be cut into by n lines?

A trivial lower bound is 2n.

93:22 (Arthur Baragar) The Markoff equation z? + y? + 22 = 3zyz has a group G of auto-
morphisms generated by (z,y,2) — (z,y,3zy - 2), (z,y,2) = (—z, -y, 2), and permutations
of the variables. Modulo a prime p > 5 this equation has

-1
P+ (—) 3p+1
p
solutions, where (—1|p) is the quadratic residue of —1 modulo p. Is this set of solutions

precisely {(0,0,0)} UG(1,1,1)? Le., does every modulo p solution lift to an integer solution?
Can this at least be shown for p = 1 mod 4?
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93:23 (Peter Montgomery) Given a large integer n, find a geometric progression
C= [647 €3, C2, Cy, CO] mod n,

where each ¢; is O(n?/3). We also require that C not be a second-order linear recurrence over
Q. This latter condition means that the determinant

Cy C3 Cy
C3 Cy (1
Cy €1 Co

is nonzero (indeed, it is a nonzero multiple of n?).

More generally, given n and d > 1, find a geometric progression modulo n of length 2d —1
with all terms O(n'~1/?) and which is not a linear recurrence of order d — 1 over Q. We are
primarily interested in the case where n is composite with no known prime factors, but even
a solution for prime n would be of interest.

Example: If n = 1993, then [57,—33,124,138,25] has ratio 419 and largest term 138,
compared to n*/® ~ 158.36. From this one can derive the cubics X3 — X — 3 and 3X3 —
3X?%+4 3X + 1 which have root 419 modulo 1993. The vector [43,12,—43, —12,43] has ratio
1159 = /—1 modulo 1993, but satisfies a second-order linear recurrence and is ineligible. [The
background, factoring n with the general number field sieve, is available from the proposer.
The address pmontgom@cwi.nl is valid only through August 1994.]

93:24 (Richard Guy) Is every sufficiently large number 24n + 3 expressible as the sum of
three squares of shape (6r — 1) with r > 07 [E.g., 291 = 17?4+ (—1)? 4+ (—1)? is acceptable,
but not 112 + 112 + (=7)2. Perhaps 7 > 0 is possible.]

93:25 (Richard Guy) Are all multiples of 3, other than those of shape 4¥(241+415), expressible
as the sum of three squares, none of them multiples of 3?

Solution: (Peter Montgomery) Yes. Let n be a multiple of 3 not of the shape 4¥(241+15).
Select a representation n = 2% + y? + z? in which the power of 3 dividing gcd(z,y,2) is as
small as possible. If ged(z,y,2,3) = 1, then at least one square is not divisible by 3. Since
n = 0 mod 3, one easily checks that none of z, y, z can be divisible by 3. Suppose ged(z, y, 2)
is divisible by 3, say z = 3a, y = 3b, z = 3c. Then

n=2a>+y 4+ 2> =9a"+ 90 + 9¢* = (2a+ 2b — ¢)* + (2a — b + 2¢)* + (—a + 2b + 2¢)%.

We can get other representations for n as a sum of three squares by changing the signs of a,
b, c. The gcd of the 12 quantities 2a + 2b + ¢, 2a + b £ 2¢, a + 2b + 2¢ will divide ged(a, b, c)
since, for example, 2a = (a — 2b — 2¢) 4+ (a + 2b + 2¢), 2b = (b — 2a — 2¢) + (b + 2a + 2c¢),
2c=(c—2a—2b)+ (c+2a+2b),a=(a—2b—-2c)+2b+ 2¢, b= (b—2a—2c)+ 2a + 2c,
¢ = (c—2a—2b)+2a+ 2b. Therefore some value among the 12 is divisible by a lesser power
of 3 than is 3 ged(a,b,c) = ged(z,y,2). This contradicts the minimality assumption.
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93:26 (Richard Guy) Are all sufficiently large numbers 40n + 27 expressible as the sum of
three squares of shape (10r + 3)?7 [427, 667, 3067 are not. Are there other exceptions?

Remark: Problems 93:24-26 stem from attempting to express (sufficiently large) num-
bers as the sum of three pentagonal, octagonal or heptagonal numbers (of positive rank).
Patrick Wahl may have answers to these questions by 1994, 1997 and 1996 respectively.]

93:27 (Paul Feit) Let S(n) = {all subsets of Z"}. By a density é for Z" we mean a function
6 :8(n) — [0,1] such that

1. 6(z") =1, 6({0})=0

2. for S, T CZ", 6§(SUT) < 6(S)+ 6(T)

3. for S CZ™veZ, 6(S+v)=46059)

4. if § C Z such that §(5) > 0 and v € Z", then there is k € N for which §(SNS+kv) > 0

Example: Suppose {I},}5°, is a sequence of finite non-empty subsets of Z" such that for
each v € Z" - ”
‘W N (L, +v
lim | (Fo + v)]
n—oo | Fo |

then §(.5) = sup |F, N S|/|Fy.] is a density.

Question: Let f, g be coprime nonzero polynomials in Z[z,,...,z,] and § = {b € Z" | g(b) #
0 and % € Z}. If 6(5) > 0, must g(z) € Z?

Remark: Known: Consider Z" as the integer points of the n-dimensional affine variety A™.
Imbed A" € P" and let oo = P" — A™. The affine variety g(z) = 0 corresponds to a projective
variety Wy. Let W = W, N oo. Now consider the real manifold P*(R). If, for each € > 0
there is an open neighborhood U of W(R) such that § ({ N A"(Z)) < e, then the answer to
the question is ‘yes’.

=1

93:28 (Paul Feit) Let Aq,..., A, be indeterminates and for each k € N define a symmetric
polynomial v, = A¥ 4 --- + Ak. Is the ring Z [{v; | k € N}] integrally closed?

Remark: True, and easily proved, when n = 2.

93:29 (Gerry Myerson) Given a positive integer k, let n = n(k) be the smallest integer such
that none of the numbers is relatively prime to all the others. It is known that n(k) exists
just if £ > 17. How does n(k) grow?

Note: n(17) = 2184. Richard Duffy and others have shown that n(18) = 27829, n(19) =
27828, n(20) = n(21) = 87890, n(22) = n(23) = 171054, n(24) > 200000. It’s not obvious to
the proposer, who doesn’t count the little kink at 19, that n(k) is monotone.
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93:30 (John Wolfskill) What is the 5-dimensional volume of the convex polyhedron whose 12
vertices are (0,0,0,0,0), (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (1,1,0,0,0),
(0,0,1,1,1), (0,0,1,1,0), (1,0,0,1,1), (0,0,1,0,1), (0,1,0,1,1). Is this the smallest convex polyhe-
dron, with vertices on the unit cube, which contains the ‘half-cube’ spanned by (0,0,0,0,0),
(%?0707070)3 (0,%,07(),0), (0703%7070)’ (Ovoa()’%a )7 (O’anvové)?

93:31 (Richard Guy) Which integers can be represented by (z + y + 2)®/zyz with z, y, 2
integers, preferably positive ones?

Remarks: Peter Montgomery found 539 solutions with 1 < z < y < z < 46300, in-
volving 501 values of n: (1,1,1) — 27, (1,1,2) — 32, (968,1125,2197) — 33, (1,2,3) — 36,
(125,162, 343) — 36, (8,25,27) — 40, (36,49,125) — 42, (7,8,27) — 49, (1,4,5) — 50, 54,
56, 62, 66, 68, 72, 75, 81, 86, 90, 91, 96, 104, .... Write

z,y Y -nX -4
7 8

and solutions correspond to rational points on the elliptic curves Y? = n2 X3+ (nX 44)? with
discriminant 2'2n8(n — 27), which are singular just if » = 0 or 27. The points of inflexion
(0, £4n?) are rational (and of order 3) and the torsion group is Z/3Z except when the cubic
has a rational root, i.e. when n = —1, 2, (27), 32, 54 and 125 and the torsion group is Z/6Z.

Necessary & sufficient conditions for positive solutions are n > 0 (indeed > 27) and
X <0.

L-series calculations by Andrew Bremner suggest that the rank is odd if n = ..., —16,
-13, -11, -9, -7, =6, —4, 7, 10, 12, 14, 15, 19, 22 (so far solutions must involve negative
z, y or z), 31, 33, 36, 37, 40, 41, 42, 43, 44, 49, 50, 51, 53, 56, 61, 62, 65, 66, 67, 68, 72, 73,
75,76, 78, 80, 81, 82, 83, 85, 87, 88, 89, 90, 91, 96, . ... Presumably 32, 54, 86 give curves of
rank 2 and solutions for 31, 37, 41, 43, 44, 51, 53, 61, 65, 67, 73, 76, 78, 80, 82, 83, 85, 87,
88, 89 involve negative z, y or z.

Examples, also due to Andrew Bremner, are (1,27,-49) — 7, (108,-343,25) — 10,
(1,2,-9) — 12, (1,125,-196) — 14, (1,9,—-25) — 15, (1442897, — 7762392, 793117) — 19,
(19652, —68921,3267) — 22.

93:32 (W. Moran) Are the numbers /9 + 2 where m € N and m? + m? + m2 = 3mm;m,,
isolated in the Markoff spectrum?

Remark: Arthur Baragar suggested that the sign under the root was meant to be minus
and that then the answer is ‘yes’ as was shown by Markoff. But the problem is as set; Moran
has a preprint.
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