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COMMENTS ON EARLIER PROBLEMS
The following appeared in the 1989 problem set:

~ An interesting Listorical item has been supplied by John Brillhart. It was hoped that Mordell
~would attend the 1970 Western Number Theory conference i in Tucson, and he submitted a problem
for presentatior. My records are not complete as far back as that, but it may be worth repeating,
if this is in fact a repetition. It was solved by another distingnished participant in our conferences,
but before gwmg the solutnon, others may hke to see if they can find an even more general one.

B (iH XY (Loum Joel Mordg.ll) Let.p be an odd prime. Write f(z) = 2?, g(z) = az?, where a is
a quadratic non-residue of p. It ic trivial that if n is any integer, then either the cotigruence
f(z) = n or g(z) = n is solvable mod p. Find other functions with this property. Prove that, if
2 is any integer, the functions f(z) = 2z + dz*, ¢(z) = z — 1/4dz? have this property.

Solution John Brillhart has supplied a solution, but it is largely superseded by the fo]lowiné

Generalization (Emma Lehmer): Mordell’s problem is a specnal case of the following theorem
(replace the d in the problem statement by a).

Theorem. Every integer » modulo a prime p is representable by at least one of the two
forms

f(z) = az* 4 4b2® 4 6cz? + 4dz
9(y) = —a* + a% where A=2ad’ - modp
. * y

undér the conditions ! :
b> = acmod p, 3c® =4bd mod p

‘Remark To obtain Merdell's ‘theorem, let b= c=0modp,d = 3 lmodpand y = 5= mod p.

 Proof: If g(y) nmod P, then the theorem holds for n. Therefore assume that n is not
' representec by ¢(y). in other words the congruence

’y? +a yn - A= Omodp

has no ratlonal root Hencc, by Stlckelberger s Theorem, its discriminant A satisfies (A|p) = 1,
~ where (A[p ) is the Legendre symbol [Stickelberger’s Theorem: Let P,(z) € Z{z],
* deg P, = n > 1, and p be an odd prime such that p} A(P, (2)), the discriminant of P,(z).
- KEPR(z)= r[,_l Q:i(z) mod p, where each Q(z) is irreducible mod p, then (—-1)*+* = (Alp).]

"~ But a3y3 + a’yn ~ A is the La.grange resolvant of f(z) — n and therefore has the same
discriminant as f(z) —n. Usmg Stlck&berger s Theorem once more this shows that f(z)—n has
~ an even number of factors, namely 2 or 4. It is well known, however, that if a quartic equation
is a product of two 1rreduc1b1e qua.dra.tlcs, then the resolvant cubic must have rational roots,
_contrary to our assumption. ‘Therefore f(x) — n contains a linear factor and the congruence
f(z) = n mod p is solvable in case g(y) = n mod p is not. This proves the theorem.

The corresponding theorem, where f (x) is a cubic, holds only for primes of the form 6m 4 1
and i is as follows.

Theorem 2. Every intgger n modulo a prime p = 1 mod 6 is representable by at least one of .

the two forms .

f(z)=2°—3hz,  g(y) = y+"7



Proof: If n is represented by g(y), the theorem is true for n. Therefore suppose that g(y) =

n mod p has no solution. Then %
v —ny+h3,=é0modp

and the discriminant A = n® — 4Ah? is such that (Alp) ~1. But the drscrxnnnant D of the

cubic f(z) —nis D = 27(4h° — n’) = —3A and therefore:(D|p) = —1 for p = 1 mod 6. Hence

by Stickelberger’s’ Theorem the cubic. f(z) — » has 4n even number of factors. a.nd theretore
f(z) = n mod p has a solution if g(y) does not and the theorem follows. - .

76:02 (Jerry Bergum) For wha.t mtegers n a,re there positive mtegers :c, y wrth z even a.nd z L y, .
such that z? 4+ 4 = b* and 2% + (y — hz)?'= : ¢ are both perfect squares? It was notedthat -

(a.) if n = 2m(2m? + 1) [ = £6, +36, £114, ... ], then z = 4m(4m + 1), = 16m‘ -i—4m2 +1
is a solution [b=16m*+ 12m?* + 1,¢c = 64m°\3+-32m +4m? o+ 1] -

(b) for n = 8, the smallest z is 2996760 . [y = 19306049, nr—y = 4668031 b= 19537249
¢ = 5547169]. .

(c) there are no solutions for n = +1, £2, i4

1986 remark: (Andrew Bremner) The equations represent an elhptlc curve, whxch in ;nore
standard form, is

Y2=X[X?+(n*+2)X +1]

with 2-isogenous curve - A
V= X(X - n?) X —(n? +4))

[The same equations arise from the ‘v-configurations’ in tiling the square with rational triangles.
See 76:28 below.] For any particular n, one can hope to calculate the rank; it seems certain
that there is no simple characterization of those n for which the rank is zero. That it is zero
for n = %1, £2, +3, 4 follows from. H.C. Pocklington, Some. diophantine Jimpossibilities,
Proc. Cambridge Philos. Soc., 17(1914) 110-121, who, in effect, calculates the rank of Y2 =
X[X?+ NX +1] for |[N| < 30. If = is not constrained to be even, then for n=38 there is the
solution z = 15, y = 8. [See comments on 77:48 below] '

76:28 (D19 in UPINT) Does there exist a ‘point in R? whose four dlstances from the corners of
a unit square are all rational?

1986 remark: Problems 76:02 and 76: 28 were repea.ted in 1977, notmg the connex,(on tha.tv
the former asks for the coordinates’(z;¥) of a pomt distance b from (0 0) and distance ¢ from an
adjacent corner (0, nz) of a square of side nz with n.an integer. For comparison wrth 77:47 and
77:48 below, we can also state the problem as “find- mteger sided tna.ngles whose base is n times
their height’. For the purposes of 76:28 it suffices to take n rational. :

Peter Montgomery used a computer to find 50 pa.IIs of squares whose corners ha.d mteger
coordinates and integer distances between corners of mates. But all 100 squares had irrational
sides. E.g., (101,120) is distance 41, 229, 289, 181 from (60 120), ( =120 60) (- 60 120)
(120, —60). He formulated the related questions

77:25 (= 125) Are there infinitely many pairs of copnme Gaussian mtegers z,, zz, wrth z[z
neither real nor purely imaginary, such that {z; — #*2,| is an integer for k = 0 1, 2, 37
Examples: (36 + 841,15 + 564), (409 + 8404, 396 + 9244} [and (60 + 120¢,101 + 120i)].



77:26 (= 126) Are there infinitely many pairs of distinct acute angles z, y with tanz/2, tan y/2
rational and cos 2z cos 2y a rational square?

Exdmples: (tanz/2,tany/2) = (4,25), 2,39, G2

John Leech lets tanz/2 = a/b so that cos2z = (a* — 6a2b? + b*)/(a? +5%)2. A nontrivial
solution of a* — 6a?h? + b* = kn? for a fixed k implies an infinity of them for this &, so for any
value of z he expects an infinity of y with cos 2z cos 2y a square.

Peter Montgomery himself used elliptic curves to find two half-angles with tangents ¢ and
(t° ~ 6£° + 24¢% — 3t)/(—3t® + 247° — 6t* + 1). The cosines of the whole angles have equal
squarefree parts. He uses these and lets z) = b(a* —b*+2ia*), z, = a(2b* +i(a* ~ b*)) with a2 +52
a perfect square, and has a solution of 77:25: e.g., a = 4, b = 3 gives (525 + 15364,648 + 7004).

T7:47 (-*147) (Ron Eva.ns) Find every integer sided triangle whose base divides its height [a sort
of dual to 76:02). '

77:48. (= 148) (Ron Evans) Let k, s, t be natural numbers. For which k is (st)? + k*(s? + t’)’
never a square? [k = 1 is such, but k=3(s=7,t=4)and k =5 (s = 399, ¢t = 188) are not.)

1986 remark: In connexion with 76:02, Hansraj Gupta noted that if you can find z,,... , z4,
coprime in pairs; just one even; z,, z, with no divisors of shape 4r + 3, and
2n = (2} - 23)(23 + 23) /71222374, then T = 22,7,2324, y = 2323 — 2222, nz —y = 2222 — zizlis a
solution. (E.g.,n = 8, z; = 113, z, = 39, 23 = 20, x4 = 17 gives the solution already mentioned.]

In 1978 it was stated that n = -3 can occur, and z = 201608, y = 1905 was given as
a solution! However, although b = 201617, nz — y = 606729, we have 2016082 4 6067292 =
6393482+ 1; someone must have used floating point, rather than integer arithmetic! Most amateur
number-theorists would note that 64 + 41 = 05 was not a square mod100.

{Cam anyone improve on the following in testing if n is a perfect square: n — |(/n + 0.5)]2
and test for zero"]

Andrew Bremner conﬁrms the duality mentioned above by noting that 77:48 is equivalent to
‘for which k is the rank of the elliptic curve y? = z[z?+(1/k* + 2)z + 1] equal to zero?’ Compare
his comment on 76:02 with n « 1 / k. He again believes that there is no straightforward
cha.ra.ctenzatxon of such £.

In the Amer. Math: Monthly, 84(1977) 820, Ron Evans asked the special case of 77:47:
E2687. Is there a triangle with rational sides whose base equals its altitude?

This is also a ‘special case of 76:28, and goes back to Pockhngton (loc. cit.). J. G. Mauldon,
86( 1979) 785-786, gave a proof of nonexistence which didn’t get into the annual index (p. 904)
and is not easy to trace. So late solutions were submitted by Selfridge, who used a classical
Fermat descent, as Mauldon did, and by Richard Guy, who used an elliptic curve. The primes 2
and 5 are both essefltial to any proof.

In 1979 Jerry Bergum spoke to the W#0 meeting at Asilomar about 76:02 and asked the

question again in the specific cases n a prime of shape 4m + 3 with n? + 4 not. prime: n =

» —41, =29, 11, 19, 23, 31, 43, 59, ... [In 1980 the question was renewed with no restriction

on n]. The erroneous example was replaced by n = —29, z = 120, y = 119, b = 169, y—nz = 3599,

¢ = 3601. The cases n = +3 were not considered. Jerry Bergum gave the least (z,y) for n = 19
as (2410442371920, 32189022936649).



1994 remark: The following reference appears to be relevant:

Charles K. Cook & Gerald E. Bergum, Integer sided triangles whose ratio of altitude to base
is an integer, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), 137-142, Kluwer
Acad. Publ., Dordrecht, 1993.

1995 remark: On 95-01-17 Noam Elkies wrote:.

Several of these problems (e.g. 76:02) amount to a family of elliptic curves E(n) over
Q and the question of characterizing those n for which E(n) has positive rank. While such
problems are still intractable in general, there is now a heuristic that should give most such
n: compute the sign of the elliptic curve (which should be the sign of its functional equation
if enough standard conjectures are proved). For most families, including presumably those in
this problem list, that sign is —1 half the time. The sign is supposed to be —1 just if the curve
has odd rank. Thus all the —1 curves should have positive rank, while. many of the +1’s have
rank zero. (I say “many” rather than “most” because it is no longer believed that a random
elliptic curve of even rank has rank zero with probability 1. Still the probability seems to be
quite large, maybe 70% to 80%, so the —1 curves will give the majority of those with positive
rank.) Warning: computing the arithmetic sign of a curve with additive reduction at 2 is not
pleasant; it has not yet been implemented on GP/PARI.

Also, it is now possible to compute large generators of elliptic. curves of rank l over (); see
for instance my paper on “Heegner point computations” in the proceedmgs of ANTS—I (Lect. .
Notes in Comp. Sci. #877).

and, on 95-02-01:

Likewise in 77:25 we can prove that there are infinitely many squares with coordinates
in the Gaussian integers all four of whose vertices have integer absolute value, with no
two collinear with the origin. (NB: the square may be arbitrarily tilted relative to the
real/imaginary axes in this problem.) Indeed let the vertices be zy.— i¥ z2 (k =.0,1,2,3).
The key is that given for each k the class of z; — i*z; modulo squares in K = Q(i) we get a
curve of genus 1 over K. It suffices to find one choice of four classes in K * /K#2 with norm 1
for which that curve has a non-torsion rational point, and this has already been done by the
searches which found specific small values of z;, 2z that work.

But we don't even need those initial pairs, thanks to the observation that the elhptlc curves
are all twists of the complex multiplication curve Y? = X3 — X [A ‘twist’ is tY? = X3~ X ]
This lets us start with one of the trivial solutions like (21, z) = (4,3) and take a multlple
of it by some Ga.ussnan integer to get a nontrivial solution. Indeed for z; = 4, 2z, = 3
we find that z + 27 is square, z§ — 27 = 7 times a square. Taking z = (z /zz)2 for a
generic 21, z3 satisfying these conditions gives 7y? = z® — z with initial solution z = 16/9.
Multiplying this by odd integers gives further solutions. Multiplying by odd Gaussian mtegers
yields solutions satisfying the nontriviality condition. For instance the 2 — { multiple gives
71 = 648 4+ 7001, 29 = 525 4 15361; the 3 + 2¢ multlple yields (sauf erreur) z; = 1897 14312 +
113054900z, z2 = —87350784 + 208638675i; “etc.”

78:17 (=167) (D. H. Lehmer. This was also asked in Raphael M. Robinson, Mersennc and Fermat
numbers, Proc. Amer. Math. Soc., 5(1954) 842-846; MR 16, 335.) Let 51 = 4, Sk“ =87 -2;if
M, =2° — 1 is prime, then §,_, = +:2(+1)/2 mod M,: which sign?

The edited version of a 94-06-22 email letter from Franz Lemmermeier that appea.red in earlier
drafts is now superseded by the following [proofs can be found in




Franz Lemmermeyer, Reciprocity Laws: Their History from Euler to Artin, monograph, in prepara-
tion].

Proposition 1.1 Let ¢ = 4a? + 27b? be prime; then

(2 + V3)#t)/2 = (~1)° mod q.

Moreover,
+1 mod ¢ ifa =2 mod 4,

@+V3it=q -1 modg ifa =0mod4,
(ﬂllab)fﬁ modq if a=1 mOd 2. A L

Conjecture 1  Let ¢ = 4a% + 276 = ¢? + 6d*> = e? -~ 2f? = 7 mod 24 be prime, where
a=b=1mod2,and e, b, ¢, d, e, f>0. Then E

o= ()i () () smar

Corollary 1.2 Let ¢ = M, = 2° — 1 be prime, and assume that p > 5; then M, = ¢? — 2f2
for e = 2(p+1)/2 _ 1 and f = 2(-1)/2 _ 1 and

Sz = (24 \/j)(q’rl)ls + (2= \/5)(1+1)/8
= OO

(%)2(?"'1)/2 mod q.

For a proof, just observe that e = 7mod 8 and f = —1 mod 4, hence (2]e) = 1, (-1{f) = —
81:24 (=324) (Julia 'R,obinson) See 94:27 below.

90:12 (Charles Nicol via John Selfridge) Let N, be the concatenation of the first n positive
integers. E.g. N3 = 12345678910111213. Are any of these numbers prime? Are infinitely many
prime? Robert Baillie has found that there are no primes out to n = 1000.

Remark: In a 95-02-14 email, Nicol enquires if further progress has been made, and
asks the same question with the concatenation reversed: 1, 21, 321, 4321, 54321, 654321, ...,
13121110987654321, ... . He and Mike Filaseta find that 8281807978 ... 54321 is the only prime
starting with 100 or less. Selfridge conjectures that there are infinitely many such primes.

93:03 (John Conway & Andrew Odlyzko) Call d a high-jumper if d occurs most frequently as
the difference of consective primes < z for some z (there may be several high-jumpers for a given
z; denote the set of such by C(z)).

Example: z = 11: 2, 3, 5, 7, 11 gives 1, 2, 2, 4, so C(11) = {2}.

Conjecture: the only high-jumpers are 4 and the prime factorials 2, 6, 30, 210, 2310,
Can one prove that hxgh-Jumpers tend to infinity? That any prime p divides all h1gh-3umpers for
z > zo(p)?

Remarks: A paragraph of UPINT2 reads as follows:



Victor Meally used the phrase prime deserts. He notes that below 373 the commonest gap
is 2; below 467 there are 24 gaps of each of 2, 4 and 6; below 563 the commonest gap is 6, as it is
between 10'* and 104 + 10® and probably also from 2 to 10'4. He asks: when does 30 take over
as the commonest gap?

Dan Goldston provides the references:
Harry Nelson, Problem 654, J. Recreational Math., 10(1977-78) 212.

P. Erdds & E. G. Straus, Remarks on the difference between consecutive primes, Elem. Math., 35(1980)
115-118.

Erdds & Straus assumed a version of the Hardy-Littlewood prime k-tuple conjecture to show
that high-jumpers go to infinity. The proposers can almost certainly show that the conjecture is
true if they assume a uniform version of the k-tuple conjecture. This has not been written down
yet, though.

Remarks: A 94-12-20 preprint
Rob Harley, Some estimates due to Richard Brent applied to the “high jumpers” problem,
and the following 94-11-15 email message have been received.

“Using the Hardy-Littlewood prime k-tuple conjecture and inclusion-exclusion you can estimate the
number of occurrences, up to some bound, of prime gaps of some fixed size. In [RB] Richard Brent showed
how to calculate some of the constants that occur in the estimates and noted that the estimates agree well
with actual counts at least in the range 10%...10°.

“Concerning Victor Meally’s question: one can compute where the estimated count of gaps of size
30 overtakes that for 6. However even if the conjectured estimates are good, the crossover point of the
estimates, X, could be far from the true crossover due to the functions being relatively flat for instance.
Nevertheless X would be somewhat useful as a “ball-park” figure. I’m currently computing X.” [The
preprint gives X = 1.7 - 10%% which gives a ‘guesstimate’ for the true crossover point.]

[RB] Richard Brent, The distribution of small gaps between successive primes, Math. Comput., 28
(1974) 315-324.

Michael Rubinstein has worked with Andrew Odlyzko on this problem.

93:06 (David, Jonathan & Peter Borwein & Roland Girgensohn, via Hugh Edgar — two problems
from their paper, “On a Conjecture of Giuga”, which will appear in the Amer. Math. Monthly and
which concludes with 10 open problems.) (a) Investigate the set of positive integers (generalized
Carmichael numbers) n = [] p¢ for which (p* — 1)|(n — 1) for each component, p*, of n. Examples
are 12025, 13833, 35425, 54145. Are there infinitely many? It seems that the methods of Alford
Granville & Pomerance probably won’t help.

(b) Characterize those positive integers n such that

Z

e
e P pein P

is a nonnegative integer. Examples of composite Kirchhoff numbers are 30, 858, 1722, 66198.
Is there an odd composite Kirchhoff number? If so, it has at least 9 prime factors.

93:08 (Gerry Myerson) If p; is the ith prime, for which n is

4]Ipi+1

i=1



a square?

Remarks:in=1 4:2+1=3% n=2 4-2:3+1=5% n=3 4-2-3-5+1=11%
n=4 4.2.3.5-7+4+1=29% n=7 4-2-3-5-7-11-13-17+ 1 = 14292,

The proposer found no others up to n = 25, the editor extended this to n = 35 and on
94-01-17 the proposer quoted David Bailey: if P(z) is the product of the primes not exceeding
z (so, e.g., P(10) = 210), then 4P(z) + 1 is not a square for any = between 19 and 23000. On

94-02-16 Peter Montgomery reports having extended the search to p, < 50000 and notes that it
should be easy to extend this much further by computing the partial products modulo several
huge primes and testing the quadratic characters.

93:14 (Andrew Granville) Are there addition chains with {(4n) = l(2n) = {(n)? And if so, then
with {(8n) = I(4n) = {(2n) = l(n) etc.?

93:15 (Edward Thurber) Is {(2n) > {(n) for all n? Some related questions are: )

(a) For all positive integers t, does there exist an odd positive integer m such that {(2+'m) =
[(2m) 7 Examples with ¢t = 1 are 2'm = 13818 and 27578.

(b) Is there an adjacent pair n, n + 1 satisfying {(2n) = {(n) and I(2(n + 1)) = l(n + 1) ?

(c) If h(z) denotes the number of integers n < z such that I(2n) = I(n), then is h(z) = Q(z)?
(d) If ¢(r) is the least integer requiring r steps in a minimal addition chain, is ¢(r 4 1) < 2¢(r) ?
If ¢(r 4+ 1) > 2¢(r), then if n = ¢(r) it follows that I(2n) = l{n). ¢(11) = 191 and ¢(19) = 18287
satisfy {(2n) = I(n).

(e) Is ¢(r) odd for all r ? {(281) = 10 and {(282) = 11; thus, there do exist odd integers n for
which [(n) < {(n + 1). Does this happen when n = ¢(r) — 1.7

Remarks: Misprint in 83:15(d) corrected. 93:14 also quoted to put things in context, but
for definition of {(n) and what is known, see C6 in UPINTZ2 (quoted in the 1993 Problems set).
A recent paper is

E. G. Thurber, Addition chains — an erratic sequence, Discrete Math., 122(1993) 287-305.

In a 95-02-10 email message, Thurber says “that if in the addition chain problem c(r) represents the
first integer that requires r steps in a minimal addition chain, then ¢(21) = 65131. This turned up in
December shortly after the conference. Knuth determined these numbers up to c(18). We now have
c(19) = 18287, ¢(20) = 34303 and ¢(21).”

93:17 (Andrew Granville) Find a non-homogeneous irreducible polynomial F(z,y) € Z[z,y] of
degree d > 5 with a lot of rational solutions z,y to F(z,y) = 0.

Remark: The best examples known are y* ~ A(z — 1)(z — 2)---(z — d) — 1 with solutions
(1,%1),(2,%1),...,(d, +1), (0,£B) where B> = A(—1)4d!+ 1. Can one get an infinite sequence
of Fi(z,y) of degree d; with at least cd? rational points for some constant ¢? You are not allowed
to cheat by using factorable polynomxals such as (z — y)(z ~ 2y).

Andrew Bremner notes that if d is even there are also the solutions (d 4+ 1,+B).

Remarks by Gene Smith, Peter Montgomery and the proposer imply that one is not allowed
to have examples where z and y may be parametrized in terms of polynomials or points on some
elliptic curve. ’I_‘he curves should be of genus > 2.

Solution: (Ed Schaeffer, 94-12-19)
Fo(z,g)=2(z-1)(z-2)--- (2= (d-1)) - y(y - 1)(y - 2)---(y - (¢ - 2))

8



has genus (d — 1)(d — 2)/2 and solutions (d, d); (d,—2) or (—1,d) according as d is odd or even;
and (¢,7) with ¢ € {0,1,...,d—1},j € {0,1,...,d — 2}; a total of d? — d + 2 solutions. If d = n?
there is also the solution (n? + n — 1,n? + n) and for d = 9 we have (13,15) and for d = 36 we
have (54,57). In 94:01 below, Schaefer asks if there are any other positive integer solutions.

Further remarks: (Noam FElkies) This is related to questions suggested by recent work of
Caporaso, Harris and Mazur on uniform bounds of the number of rational points of curves of
genus g over number fields. For curves of given large genus over Q the best approach is probably
Mestre’s trick: pick “random” rational z,, 3, ..., zs with d even, and write (z — z,)---(z — z,)
as a square minus a remainder polynomial R(z) of degree d — 1. Then there are at least d pairs
of rational points on the hyperelliptic curve y* = R(z), with z-coordinates z,,... ,z4. [Variations
of this will be my topic at the March 1995 meeting in Chicago.]

93:20 (Eugene Gutkin via Jeff Lagarias) Let G, be the solutions of tannf = ntan@ with 0 <
§ < m. Determine G, N Gpn. (The question arises in studying orbits of billiards with special
properties.)

Remark: (Jeff Lagarias, 1993) If we write z = €?*? then

ein& _ e—inﬂ " — 1 z -1
g = — — = d tanf =
tann P T e | an an z 1

Hence the equation tannf = ntan# becomes
(n—=1)E"*"-1)-(n+1)z"-2)=0
The left side has a “trivial” factor (z — 1), so consider, for n > 1, the polynomials

(=1} z* —1) ~ (n+ 1) (2" - z)
Pa(z) = T (- 1)

Conjecture. p,(z) is irreducible if » is even, and = (z + 1)(irreducible) if n is odd.

Checked by Maple for n < 20. It would imply G, NGy, = {0} if mn =0 mod 2 and G, NG,, =
{0,ix}if n =m =1mod 2. '

Remark: (Gene Ward Smith, 94-07-03) We can use Jeff’s polynomial to analyze this, but it
seems easier to work with the tan(8) directly. To do this, set f,(z) = (1+ 1z)* — (1 — iz)", where
i = /1. Then

Ta(2) = i(n = D)fara(2) = (n + 1)(z* + 1) fa-1(2)]/82°
is a polynomial of degree n — 2 if n is even, and n— 3 if » is odd. It is a polynomial in 2%: that is,
with only even terms. The roots of it correspond to the non-trivial solutions of tan(n6) = n tan(d),
with z = tan(9).

We can obtain a partial solution to the problem for the case when n 4+ 1 is a prime by noting
that in this case, the above polynomial is Eisenstein at n 4 1 and hence irreducible.

To see this, note that the constant term is ("}'); and the n—2th term is (—1)"+1)/2p/2 when
n is even, or (—1)("+1)/24(**1)/?) when n is odd. Hence the highest degree term is not divisible

by the prime n + 1, and the lowest degree term is divisible exactly once. The other terms can be
seen to be divisible by n + 1 from the general form of T,(2) above.

9



If we could show that T,,(z) was irreducible in general, it would solve the problem.

It it worth noting that T,,(y/z) seems to be irreducible, with Galois group the symmetric
group for the corresponding degree, and that the field extension obtained from it appears to
ramify only at primes less than or equal to n + 1.

Remark: (Jeff Lagarias, 94-07-05) Eugene Gutkin, egutkinCmath.usc.edu, has a preprint:
“Billiard tables of constant width and dynamical characterization of the circle.”

93:30 (John Wolfskill) What is the 5-dimensional volume of the convex polyhedron whose
12 vertices are (0,0,0,0,0), (1,0,0,0,0), (0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), (1,1,0,0,0),
(0,0,1,1,1), (0,0,1,1,0), (1,0,0,1,1), (0,0,1,0,1), (0,1,0,1,1). Is this the smallest convex polyhedron,
with vertices on the unit cube, which contains the ‘half-cube’ spanned by (0,0,0,0,0), (3,0,0,0,0),
(0,3,0,0,0), (0,0,3,0,0), (0,0,0,2,0), (0,0,0,0,3)?

Remark: (Andrew Mayer, 94-07-11) I entered the given points, and found that the 5-
dimensional volume of the polytope is 23/120 (about 0.19). Just to make sure, I verified the
number by Monte Carlo runs, and it checked out. This, I believe, answers the first question.

The second question is more interesting. If the vertices of the cube arc ideutified with subsets
of {a,b,c,d,e} in the obvious way, and the V; are the selected vertices (a subset of the power set
of {a,b,c,d,e}), then a sufficient condition for the “half-cube” to be contained in the convex hull
of the V; is the following:

Every subset of {a,b,¢,d, e} is the disjoint union of two of the sets corresponding to the V;.

This is because (V;+V;)/2 is a vertex of the half-cube when V; and V; are disjoint. It may not
be necessary, though, because it requires the extra condition that each vertex of the half-cube be
the midpoint of a line connecting just two of the vertices. It may be possible that the use of less
trivial combinations will give rise to a smaller polytope.

So I fiddied around and found the following set of V; satisfying the above condition:

{9} = 00000, {a} = 10000, {6} = 01000, {c} = 00100, {d} = 00010, {e} = 00001, {a,b} =
11000, {a,c} = 10100, {b,c} = 01100, {d,e} = 00011, {a,b,c} = 11100,
There are only 11 of these, as opposed to the 12 given, and my program gives the volume of

the convex hull to be 1/10, which is almost half the size of the one given (answering the second
question in the negative). Sadly, (as explained above) I don’t know if this is the optimal value.

93:31 (Richard Guy) Which integers can be represented by (z+y+ z)"’/ zyz with z, y, z integers,
preferably positive ones?

Remark: This is essentially solved, by relating it to the family of elliptic curves ¥? =
n?X3 + (nX +4)%,in :

Andrew Bremner & Richard K. Guy, Two more representation problems, (submitted to) Proc. Edin-
burgh Math. Soc.
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PROBLEMS PROPOSED 94-12-19 & 21
94:01 (Ed Schaefer) (Compare 93:17 above.) Let
Fa=z(z~1)(z-2)--(z-(d-1))-y(y-1)---(y-(d—2))

where d is an integer at least 5. Then Fy(z,y) = 0 .has solutions (d,d) and (f,5) where i €
{0,1,2,...,d-1},7 € {0,1,2,... ,d — 2}. If d = n?, there’s (n? + n — 1,72 + n) and for d = 9
we have (13,15) and for d = 36 we have (54,57). Are there any other positive integer solutions?

94:02 (ErdSs Pal) A system of congruences ¢; mod n; (1 < ¢ < k) is a covering system if every
integer y satisfies y = a; mod n; for at least one value of i. For example 0 mod 2; 0 mod 3; 1 mod
4; 5mod 6; 7mod 12. If ¢ = n; < ny < -+ < n;, then Erdés now offers $1000.00 for a proof or
disproof of the existence of covering congruences with ¢ arbitrarily large.

Remark: See F13 in UPINT2. Choi has a system with ¢ = 20 and a Japanese is reputcd to
have achieved ¢ = 24.

94:03 (Erdds Pal) Crocker proved that there are infinitely many odd integers not of the form
2% + 2! + p, where p is prime. There may be ¢z of them less than z, but can > 2 be proved?

Remark: See A19 in UPINT2.

94:04 (Erdos Pél) Is it true that for large r every integer is the sum of a prime and r powers of
2 7 At least prove that the density of such numbers is 1 —¢,.

94:05 (Neville Robbins) Given a prime p, find a prime ¢ such that ¢ = 2p—1 mod 4p [by Dirichlet’s
Theorem there are infinitely many such], so that ¢+ 1 = kp, ¢ = a®+b? and a® + 62+ 12402 = kp.
This leads to a representation of p as the sum of 4 squares. By taking sufficiently many ¢, can
we obtain all representations of p as the sum of 4 squares?

94:06 (Sam Wagstaff) Find a (small) function B(n,t) where n is an integer > land 0 <t < 1
so that if A C a reduced system of residues, mod n, and {A| > té(n), then

meiil(leasl prime = a mod n) < B(n,t)
a

Notes::

1. When ¢t is near 0, B(n,t) may be only Linnik’s bound, n¢, on

' least p = dn).
gcdlfi%:x( east p = a mod n)

2. When t is near 1, B(n,t) should be small, say O(nlnr).
3. Can you solve the problem just for t = 1 ?

4. B(n,t) should be monotonically increasing in n and monotonically decreasing in t.

11



Remarks: (Carl Pomerance) For (a,n) = 1, let p(n,a) be the least prime = a mod n. Let
@1,-.. ,84n) be a reduced residue system mod n organized so that p(n,a;) > p(n,az) > --- >
p(n, ag4(n)). For t € (0,1), Wagstaff asks for an upper bound for p(n, q;) for i > t¢(n).

Using sieve methods I can prove that there is some ¢, € (0,1) such that
p(n,a;) < 2(¢(n)+ 1 —1)Inn for i > tré(n). (I've shown in

Carl Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory, 12(1980)
218-223; MR 81m:10081

that this inequality fails for ¢ = 1 for most n.) Sketch of proof: Say i > t;¢(n) and write
#(n) — i = ep(n). Suppose ¢ < 1/Inn. Then p(n,aq;) is the (¢(n) + 1 — i)-th prime that does
not divide n and the result follows. Say € > 1/Inn Then consider the primes up to 2ep(n)Inn.
There are about 2e¢(n) such primes that do not divide n and we wish to show that they cover at
least eg(n) residue classes mod n. The number of classes they cover is > (# primes < 2e¢(n)Ilnn
not dividing n) — (# pairs of primes < 2¢¢(n)Inn that are congruent mod n). That is we have
to show the second term is < e¢(n). For each k < 261("21 Inn, consider Ny, the number of primes
p < 2¢d(n)Inn with p + kn prime. Then the second term aboveis < 3_N; for k < 26%5‘-l In n.
By the sieve,

& k' n 2e¢(n)lnn & k en

T Pk)p(n) (Inn)? d(k)lnn

Ny

Thus p
ZNk < e- () lnn- — = E¢(n).

n Inn

Thus for ¢, sufficiently close to 1, we have ¢ < 1 — ¢y and so }_ Ni < €¢(n), and we’re done.

94:07 (Bart Goddard) Let
@)= -Dz"+(n-2)2" ' 4---4+22° 4 2 —z + nLH

and fa(an) = infp ) fa(z)

(a) Find an upper bound for f.(a.).

(b) Find lim, . a,

Remark: Possible answers: (a) < /n, (b) 3.

(Paul Feit) f'(z) = nlz"~! + ---+ 2z — 1. The root is being pushed to 0 rapidly as n gets
large.

94:08 (Gene Ward Smith) Show that for n > 2, the polynomial

n
n—2

n n-1 n-2
P,,(:r):z"-i-(;z—_—l—) :L’n-l-i-( ) :c"“2+---+na:+1

has precisely one real root r > —1.

Remarks: I use the function

f@=3 5

n=0
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when teaching power series and the n-th root test. It has a real root around —1.40376--- and
seems to have no other real roots, but many complex ones. The truncated series seems to have
only one root between —n and 0, which gives this problem on making a substitution, and would
establish the presumptive theorem about the root of f(z).

For z = —1 the polynomial almost gets back up to a zero, but not quité. For odd-degree
polynomials it then proceeds downward again; for even degree it quickly heads up to what seems
to be the only other real root. This can be confirmed for particular n with a Sturm sequence.

94:09 (Morris Newman) Let
p2e+1 + 1

g(n) =3 _dé(d) = [T ——

an poin PT1
Is g(n) ever =0 mod n ?

Remarks: Yes if n = 1. No if n is even. This is Problem 10410, Amer. Math. Monthly,
101(1994) 911, proposed by Frank Schmidt.

Solution: (Peter Montgomery) g(7 - 13-43 -157) = 43 - 157 - (13 - 139) - (7 - 3499)

- 94:10 (Morris Newman) Are there infinitely many primes p such that ged(2? —1,3P —1)> 17

Remark: Suppose that p = 12n—1, ¢ = 2p+1 = 24n—1 are both primes, then ¢{(2?-1,37-1),
so if there are infinitely many such prime pairs, the answer is affirmative. Is there another
approach?

There are cases besides p = 11, 23, 83, 131, 179, 191, 239, 251, 359, 419, 431, 443, 491, 659,
683, 719, 743, 911, 1019, 1031, 1103, ... for each of which the ged is 2p + 1. Sam Wagstaff
calculates all examples with p < 10%. In addition there are values of p # 11 mod 12, where the
ged = 2kp + 1: p= 43 463 883 3319 4057 4373 4787 4903 7529 8317 9007

k= 5 12 5 5 12 12 12 5 7 23 5
as well as p = 6947 = 11 mod 12 for which 2p+ 1 is not prime, but which gives a gcd = 26p+1. In
answer to the question: can the gcd ever be a proper multiple of 2p + 1, he gives the spectacular
example p = 1931 for which the gcd = 193949641 = 3863 - 50207, where 3863 = 2p + 1, 50207 =
26p + 1, k = 50220.

v These calculations were also carried out by Robert Harley, who notes that similar considera-
tions hold for gcd(2? — 1,57 — 1) when 2 and 5 happen to be k-th powers mod gq.

Unless p = 2, k is even so ¢ = £1 or + 9 mod 40. Respectively, 40|k unless p = 2 or 5; 2|k
unless p = 2; 8|k unless p = 2; 10|k unless p = 2 or 5. Examples are

? qg k| p q k

P q k
2 3 1] 937 28111 30| 4013 120391 30
431 3449 81013 6079 64273 25639 6

499 20959 42 | 1223 31799 26 [ 4513 135391 30
547 5471 10| 1789 39359 22 | 4787 114889 24
© 571 5711 10| 2539 25391 10 [ 5393 32359 6
641 49999 78 | 2593 15559 6| 6173 37039 6
761 6089 8| 2677 465799 174 | 6199 61991 10
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Likewise for gcd(3® — 1,5” — 1)/2 when 3 and 5 happen to be k-th powers mod ¢. Unless
P = 2, k is even s0 ¢ = £1 or + 11 mod 60. Respectively, 60|k unless p = 2, 3 or 5; 2|k unless
P = 2; 10|k unless p = 2 or 5; 12|k unless p = 2 or 3. Examples:

2 q k P q k P g k
109 1091 10 {2039 24469 12 | 4337 104089 24
1009 10091 10 | 2437 24371 10 | 4663 214499 46
1607 38569 24 | 2477 34679 14 | 4787 114889 24
1999 19991 10 | 3989 47869 12 | 5059 50591 10

For p = 2039, one can also take ¢ = 4079, k = 2!

Note that for p = 2, gcd(3? — 1,57 ~ 1}/2 = 4 which is not a product of primes of the form
kp+1.

94:11 (Gerry Myerson) Let B, be the set of all n-tuples with entries taken from {—1,0,1}. For
each subset § C B, of size n — 1, let Wy be the lattice generated by S, and let W,, = |Jg W5, the
union over all such subsets S of B,. Find a “small” element of Z" that’s not in W,,.

Remarks: For example, if n = 3, (1,2,6) and (2,4,5). After the meeting, the proposer wrote:
“I didn’t say what I meant by small ... . It doesn’t matter much which norm you use to measure
the size of the n-tuple. The sum, Euclidean, and max norms differ by a factor » at most, which I
expect is insignificant. Let D, be the largest possible determinant of an n X n matrix with entries
from {—1,0,1}. Then it is easy to produce an element of W, with maximal entry roughly D?_1,
namely

(lyDn-l + ly(Dn—l + 1)27' os® 7(Dn-l + 1)n—l)

By the Hadamard bound on determinants (which is, I think, achieved for many n), D, < n"/2, so
we certainly have an element of W, of size bounded by n3"’. When I asked for a small element,
I meant one of size significantly less than ne®”.”

94:12 (Graeme Cohen, via Doug E. Iannucci) For a positive integer n, show that o(o(n)) = 4n
only if n is odd.

Remark: The only such numbers less than 5 - 10® are 15, 1023 and 29127. Graeme Cohen
has further checked this to 10°. These numbers were mentioned in

Carl Pomerance, On mﬁltiply perfect numbers with a special property, Pacific J. Math., 57(1975)
511-517.

94:13 (Carl Pomerance, via Doug E. Iannucci) For each positive integer n, is there a positive
integer k such that o*(n)/n is an integer?

Remark: o*(n) = a(0*~1(n)), 0°(n) = n. The first few (least) values of k are:

n2345678910111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
k242515274153 133 2 2134125 213162174 9 178710417116 5 28

Robert. Harley supplies the following ‘critical table’ of k(n), assuming that ‘probable primes’
occurring in the computation are actually prime:
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n23591123252959% 67 101 131 173 202 239 353 389 401 461 659
k24571516 17 78 97 101 120 174 214 239 261 263 296 380 557 > 718

Find an n which requires a spectacular value of k. It’s inconceivable that the conjecture is false.
Each (odd part of) n divides 2"* — 1 for a suitable s and all r. 6(27*~!) = 2" — 1. As k increases,
o*(n) increases quite rapidly, and so does the power of 2 it contains, albeit very erratically. How
can the sequence of exponents of 2 avoid all members of the arithmetic progression rs —17 A
couple of curiosities: 0%(36) = 0°(37), 02%(37) = 22632527213 so that ¢?7(37) is odd.

Much additional information is in a forthcoming paper:
G. L. Cohen & H. J. J. te Riele, Iterating the sum-of-divisors function (1994 preprint).

They call numbers (m, k)-perfect if o™(n) = kn; e.g., perfect numbers are (1, 2)-perfect, mul-
tiperfect numbers are (1, k)-perfect, (2,2)-perfect numbers have been called superperfect and
(2, k)-perfect numbers multiply superperfect; these last being discussed by Pomerance in
the reference at 94:12 above. They tabulate all (m, k)-perfect numbers n for (m,n) = (2, <
10°), (3,< 2-10%), (4, < 10%) and prove that the equation ¢%(2n) = 20%(n) has infinitely’ many
sotutions. They ask: for any fixed m, are there infinitely many (m, k)-perfect numbers? and :
is every n (m, k)-perfect for some m? (i.e., the present problem.) For n € [1,400] they list the
least such m. The most ‘spectacular value of k¥’ (m in their notation) was 78 for n = 29, the only
instance in their table with m > 2n. Perhaps it is never ‘spectacular’?

94:14 (Terry Raines) Find an optimally efficient algorithm for representing a positive integer as
the sum of four cubes. For N = a3 + b® + ¢® 4+ d® a search with four nested loops soon becomes
intolerably slow. Much more efficient is to check three nested loops for suitable a, b, ¢ and then
verify that N — a® — b3 — ¢® is a cube. With this I have found representations for all N < 20000;
however, a small number of “bad” N took several hours to break. What are “suitable” a, b, ¢ ?
Is an algorithm with only two loops possible? What if we take N — a® to be small and attempt
to represent this difference with three cubes?

Remarks: (editor) Only N of shape 9n + 4 need be tried. Presumably sieving is done, with
cubic residues?

(Noam Elkies) Whether a, b, ¢, d are required to be positive, or not, given N, an exhaustive
search for solutions of N = a3 4 - -- 4 d® with a, b, ¢, d bounded by M [presumably M < N/3
is enough] can be done in time O(M?In M) and space O(M?) by the standard ruse [see the
beginning of Knuth III for instance] of 1) listing all a3 + b3; 2) sorting the list, keeping track of
a, b and deleting duplicates; 3) using this to also create a list of N — ¢® — d%; 4) merging the two
lists, sorting, and looking for duplicates. But if you want to catch all N through say 10°, it is
much simpler and quicker to set up a table of length 10°, run 4 nested loops only once, and each
time a® 4+ b + ¢ 4 d® attains a yet-unseen value of N store a, b, ¢, d in the N-th place of the
table.

(Richard F. Lukes) Extract from 1994 Univ. of Manitoba thesis:
All numbers less than 10 million can be represented as the sum of four cubes

Waring’s Problem is to find the least value of g(k) such that every positive integer can be
expressed as the sum of at most g(k) kth powers of positive integers. For cubes it is a longstanding
result that no more than 9 cubes are required to represent every integer, and thus ¢g(3) = 9. The
so-called Easier Waring’s Problem is that of determining the least value of v(k), such that every
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integer (positive or negative) can be expressed as the sum of v(k) positive or negative kth powers.
In 1894, Oltramare proved that 4 < v(3) < 5. In an attempt to find numerical evidence that
v(3) = 5, we searched for integers which are difficult to represent as the sum of 4 positive or
negative integer cubes (4 cubes for short). Instead, we found some numerical evidence to support
that v(3) = 4 by determining the representations of all integers n, where [n| < 107, as the sum
of 4 cubes.

A computer search was undertaken to determine those integers d which arc difficult to rep-
resent as the sum of 4 cubes. In our algorithm, we first determined all d3 = z° + 3* + 22 for
0 < d3 < 10° and max(|z|, |yl,|z]) < 1300 and stored these values of d3 in an array. \Ve then
determined all values of dy, for 0 < dy < 10°, which can be formed by taking an element d; and
adding or subtracting integer cubes w?, where 0 < w < 100. This program took approximately
20 minutes of CPU time on a DEC Alpha 3000-300 workstation. The result of this process was
that the only integer d, between 0 and 10° which could not be represented in this manner was
82,562.

In an attempt to find further examples of integers difficult to represent as the sum of 4 cubes,
we extended the search for 0 < ds,ds < 4 - 10° and max(jz],ly[,|z|) < 1500 and 0 < w < 150,
and this time found two representations for d, = 82,562 expressed as the tuples (z,y,2,w) =
(~—1498, 1490, 377, 41) and (350, —331, —163, —130). This search uncovered no other values of
d4 in the range 0 < dy < 4-10° which could not be represented as the sum of 4 cubes. As a final
test, we ran our algorithm for 0 < d3,ds < 107 and max(|z|,|y],|z|) < 1600 and 0 < w < 215,
and again found no values of d; in this range which could not be represented as a sum of 4 cubes.
To ensure that no errors occurred during our computations, the complete list of representations
for dy = £4 (mod 9) were stored to a file and double-checked on an Alpha workstation using
64-bit signed integer arithmetic. Only those values of dy = +4 (mod 9) need be verified since it
is known that all integers # +4 (mod 9) can be represented as a sum of 4 cubes.

Because there is heuristic evidence to shggest that it is easier to represent larger integers as
the sum of k cubes, the lack of difficult values of d4 in the range 0 < d, < 107 suggests that either
these difficult values are very rare, or all integers can in fact be represented as a sum of 4 cubes.

[added 95-03-02: Using a modified version of our algorithm we have determined that all
integers less than 200 million can be represented as the sum of 4 positive or negative cubes,
where max(|z|, [y}, |2]) < 1600, and 0 < w < 300.

. 94:15 (Paul Bateman) For a positive integer n let , denote the n-th cyclotomic polynomial,

o, (z) = [J(1 — )~/

din

Also let A, be the absolute value of the numerically largest coefficient in ®, and let S, be the set

of distinct integers occurring as coefficients in ®,. If d and m are odd squarefree integers greater
than 1 and if d|m,

(;L) is it always true that 4, < A,, ?
(b) is it always true that $4 C S, ?

Remark: S, = {1} if m is prime, S,, = {0,£1} if m is the product of two primes, S,, C
[-(p—1),p - 1] if m is the product of three primes the least of which is p.
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Robert Harley provides some counferexamples:

m Sm d Sd

5565 {—2,...,3} 1855 {-3,...,2}
8547 {-3,...,4} 2849 {—4,...,3}
14235 {-2,...,2} 4745 {-2,...,3}
16485 {-3,...,2} 5495 {-2,...,3}
22407 {-3,...,3} 7469 {-4,...,2}

On 95-03-30 Bateman emails the counterexample

51"597 = {‘*5 3}, 54199 = {—3 }

and suggests that it may be more reasvnable to consider 7,, the set of absolute values of the
coefficients, in place of §,, and to ask

(c) 1s it always true that T is a subset of 7,,, 7 [No! Sec third example above.]

94:16 (Herbert Taylor) Consider an n x n array of 2n — 1 different letters, each filling a diagonal
parallel to the main diagonal.

0 ¢ b ¢

o 0 (1)82 10 a b
10 210210(1
3 210

Try to permute the rows and columns so that one letter still fills the main diagonal, but no letter
appears more than once in any other diagonal parallel to the main diagonal.

0 b ¢ a

000, O(I)Z 2 0 a1
10 ‘:20 310 2

1 a b 0

For which n can it be done?

Remark: Tlhe first unknown n is 32. There is a connexion with Costas arrays, e.g.

01000
00010
10000
0 0001
c 0100

Compare Richard K. Guy, Parker’s permutation problem involves the Catalan numbers, Amer.
Math. Monthly, 100(1993) 287289, and the references to solutions on pp. 948-949.

94:17 (Sun Hsin-Min via John Brillhart) If p is an odd prime and 2p 4 1 is prime (p a Sophie

Germain prime), then 2p + 1{M, =27 — 1 (Euler factor). Is it true that (2p + 1) never divides
M, ?
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Solution: (Franz Lemmermeyer) Let ¢ > 3 be an odd integer and suppose that p = d4g+ 1 is
prime. Then S, = 2%¢ 4 1 is never prime because of the factorization

Sg=A, B,y Ag=2-2%F 41, B =242% 41.
Now p = 4¢ + 1 = 5 mod 8, hence the quadratic reciprocity law shows that §, = 2(-1/2 =+ {
(;?-) + 1= 0mod p. Thus p | A,B,, and the question [first posed by Brillhart in A
J. Brillhart, Concerning the numbers 2?7 + 1, p prime, Math. Comput., 16(1962), 424-430]

is: which? Since quadratic reciprocity has told us that p | A,B,, we might hope that quartic
reciprocity will answer this question. We have already seen that quartic reciprocity is somehow
related to the presentation p = a® 4 b? of p as a sum of two squares, hence we let our computer
make a small table:

Lel pl+]e] b] Lal pl+] al b]
3] 13 B3] 2 3T 140 A 7]10
7] 29| B|5]| 2 39157 A [11] 6
9| 37|[A|1] 6 3|173{B 13| 2
13| s3)[B|7] 2 45181 AL 910
15| 61)lA|5]| 6 49197 B | 1|14
25 (101 | A |1]10 57220 [ B | 15| 2
27 (109 A {310 67 | 269 || A | 13| 10

This table gives rise to the following

Conjecture. With the above notation, we have
b b
Pl A, &= 3 =+3mod8, and p| B, < §E:tlmod8.

In fact, we can prove a somewhat stronger result:

Proposition 3.1 Let ¢ and u be odd integers, and suppose that p = 4qu+ 1= a2+ 4b? is
prime. Assume moreover that p {5, = 22¢ + 1 (this is equivalent to 2°~1)/% = 1 mod p, thus it is
always true for u = 1). Then

S, = A, B,, where A, =27 —2"¥ 4 1and B, = 20 + 2% 41,
b=13umod8 <= A, =0modp,B,=2(1+27)mod p;
and g d
b=+umod8 <= B, =0modp,4,=2(1+2?)modp.

{For préofs of this and the next two propositions, see the Lemmermeyer reference at 78:17
above.]

The octic and sextic analogs are

Propos.ition 3.2 Let g and u denote odd integers, and let p = 8qu+1 = a245% = ¢>42d? be
prime, where 4 || b. Assume moreover that p | §, = 22941 (this is equivalent to 2°~1)/¢ = 1 mod p;
n s B s h plA, <= d+%u=+1mods,
if = 1, this is trivially true). Then p|B, <> d+du=+3mods.
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Proposition 3.3 Let ¢ = 1mod 2, v = £1 mod 6, and let p = 77 = 6gu + 1 be prime,
where 7 = a + bp is primary. Le., p is a primitive cube root of 1, and a + bp is called primary if
3|b and the following congruences hold:

a+b=1mod4 if 25,
b=1mod4 if 2}a, and
a=3mod4 if ab is odd.

If 3¢-1/* = 1 mod p, then 339+ 1 = K,L,M, = 0 mod p, where
K,=3'41, L,=31-3% 41, M, =34+3% 11,
and we have
pl K, <= 9]|b,
plL, < (1) =(2)-%mods3,

u 3
pIM, = (1) =-(2)-%mod3.

u

After I had found proofs of the propositions above, I discovered a proof of Conjecture 1 (the
special case u = 1 of Prop. 3.1.) in

Th. Gosset, On the law of quartic reciprocity, Messenger Math.(2), 41(1911), 65-90.

94:18 (Charles F. Osgood) Do there exist any complex numbers a for which the Riemann zeta
function has a positive deficiency in the sense of Nevanlinna theory?

Remark: For those of us without Nevanlinna theory at the tips of our fingers, Noam Elkies
kindly explains: is there an @ € C and € > 0 such that, for an infinite sequence of R approaching
infinity, the number of solutions of ((s) = @ with |s| < R, not counting multiplicity, is less
than 1 — € times the number of solutions, counting multiplicity, of that equation for generic a?
(Presumably a = 0 can be taken as a “random” enough a.)

94:19 (Sinai Robins) Evaluate

1
lim Y &
Bt ™ (m —2n)
m#0
m—-2n#0

I conjecture that this is a rational number. The meaning of (—1)* is taken from the counter-
clockwise direction.

94:20 (Melvyn Knight) Consider the 10-adic number =z = ¥, ,n!. Is z irrational? Is z tran-
scendental?

Remark: By ‘z is rational’ is meant that there exist integers a and b such that for every
positive integer s there exists M = M(s) such that if m > M then bz,, = a mod 10°. For those,
if any, as stupid as the editor, Gerry Myerson further explains that n! is divisible by 10* for all
n > no(s), so, all the m-th partial sums, z,, from some point on are congruent mod10*. E.g.,
Z, = 4mod 10 for m > 4, because 5!, 6!, 7!,... are all = 0 mod 10. And z,, = 14 mod 100,
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- at dm
€°

for m > 9, because zg = 14 mod 100 (compute 0! + --- + 9!), and everything from 10! on is
divisible by 100. So, the last two digits of = are 14. If you want the third from last digit, compute
0!+ --- 4+ 14! modulo 1000.

94:21 (Peter Fletcher, William Lindgren & Carl Pomerance) A pair of different primes p, ¢ form

- a symmetric pair if ged(p — 1,¢—1) = |p—g}. For example twin primes, or (13, 19). Are there

infinitely many symmetric pairs?

Remark: The proposers have shown that there cxist infinitely many primes that do not
belong to a symmetric pair. The first few are 23, 47, 83, 163, 167, 173.

94:22 (James P. Jones) The Pell équation 22 — (a? — 4)y? = 4 has solutions z,(0) = 2, z,(1) = a,
To(n+2) = az.(n+ 1) — z4(n); ¥(0) =0, ya(1) = 1, ya(n + 2) = aya(n + 1) — y,(n). Write the
odd prime p in the form p = 2'q + ¢, where ¢ is odd and ¢ is the Legendre symbol ({a® — 4)|p).
Suppose ¢ > 2,i.c. p = ¢ mod 4 and suppose that ply.(g). Theu it follows that z,(¢) = +2 mod p.
Find the rule for the + sign. :

Remark: Examples: p=41. If a = 6 sign is +; if ¢ = 7 sign is —.

Solution: (Franz Lemmermecyer) Define m = a? — I; then it is easy to sce that

zq(n) + ya(n)ym = 2¢, wherc s a unit in some order of the quadratic number
~—~"Tfield K = Q(y/m). The problem posed above is equivalent to the evaluation of €l mod p, where

g=(p—¢€)/2in fact z,(g) = 2¢!, mod p.

The case ¢ = +1 has been studied extensively by Scholz, Redei, Aigner, . Lchmer, Barrucand
& Cohn, Brandler, Leonard & K. S. Williams, Halter-Koch, Ishii, and many others. If ¢,, is the
fundamental unit, then €2-1/2 and €?~1)/4 have been computed for prime m (or more generally
for m such that the 2-class group of K has at most one invariant divisible by 4); and if €, has
norm +1, similar results for P~/ are known.

The case € = —1, on the other hand, seems not to have been examined at all. Observe that
we have treated some special cases in Sect. 1 (for the unit 2 + +/3); other than that, not much is
known:

Proposition 2.1 Let h denote the (odd) class number of Q(,/=¢), where ¢ = 3 mod 4 is
prime. Let p = 3 mod 4 be a prime such that (—g|p) = 1; then p* = 4a? + ¢b? for some a, b € N.
If €, denotes the fundamental unit of X' = Q(,/g), then

6;_?‘1 = (-1)" mod p.

+1 mod ¢ if ¢ =2 mod4,
e =1 -1 mod ¢ if ¢ =0 mod 4,

(—1lab)t,/§ modq ifa=1mod2.

[For a proof see Lemmermeyer reference at 78:17 above.]

Back to the example: if p = 41, @ = 6, then m = 6% —4 = 32, ¢,, = 3 + 2v/2 = €2, hence
=18 = ~1I% = (¢,|41)4 = +1 by Scholz’s reciprocitytheorem.

94:23 (Zachary Franco) For which ¢ does * + £ + 1 = n? have a solution in positive integers a,
b, n 7 It’s clear that if (3/(t — 1)) = —1, then no solutions exist.
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Remarks: It was conjectured that for t = 2 the only solutions were (a,b,n) = (5,4,7) and
(2k,k+ 1,2+ 1) for k=1,2,3,..., but Robert Styer, in 2 94-12-30 email, gave (9, 4,23), and
said that there were no other sporadic solutions with n < 220,

The problem was emailed to Reese Scott and Benne de Weger. Reese Scott shows that if a is
even, only the infinite family of solutions exists. If a is odd and a < 3b — 3, then there are only
the two sporadic solutions. If a is odd and a > 3b — 3, he hadn’t solved it at the time of writing,
but if a solution exists, a > 40.

de Weger notes that the following are relevant:

Frits Beukers, On the generalized Ramanujan-Nagell equation I, I, Acta Arith., 38(1980/81) 389-410,
39(1981) 113-123; MR 83a:10028a,b.

namely, for the R-N equation 2° + D = n?, Beukers proves a < 435+ 101n|D|/1n 2, so for the
present equation a < 435 + 10J.

Reese Scott said that the methods he used for t = 2 apply for ¢t prime and, for prime p,
p° 4+ p* + 1 = n? has no solutions unless p = 7 mod 8, and there are no solutions unless a is odd
and b is even, and no solutions if « < 3b. Hence he shows that n > 2108,

94:24 (Peter Borwein) Exhibit two Liouville numbers o and 8 such that e* = g.

Remark: It is obvious that two such numbers exist.

94:25 (Peter Borwein) Make the following algorithmic:

Do there exist two distinct sets of integers {o;}12,, {8:}]1, so that

11
(l‘ _ 1}11 Z(xa; _ xﬁ.‘)
i=1

Remark: This is the first unresolved case of the Tarry-Escott problem.

94:26 (Mike Zieve) For p prime, let )
f(@)=2 4+ bo+ b1z + baz® + - + bz € Fylbo, by, ... ,b,)[2]

be a generic polynomial of degree n. Let g(z) € Fplbo,...,b.)[z] be the p-th iterate of f, and
write g(z) — z as a sum of monomials cz*b§°b3" - --b%~ where ¢ € F,\{0}, and %, ao, i, ..
a, > 0.

Conjecture: If K < p— 1, then 2a0+ 0, > p— 1.

9

Evidence: For each n and p this is true for the first several thousand terms. For p < 5 this
is true for each n. For small n this is true for each p. As an example we give a proof for n = 1:

flz) = bo+(1+b)x

g(z) = b1+ +b)+--+A+b6) N+ (1+b)z
L (b1 .
= by THh)e

bP

= b +(1+¥)e
1

= z+4 bob‘l"1 + bz
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where the second and third terms have 2ap 4+ @, = p+ 1 and 2a¢ + a; = p.

94:27 (Dan Shanks & Sam Wagstaff)

Martin Davis, One equation to rule them all, Trans. New York Acad. Sci. Ser. II, 30(1968) 766-773
showed that if the diophantine equation

9 + T — T + 757 =2 Q)

had no solution other than the trivial one u = 1, v = 0, r = 1, s = 0, then the Hllbert te;_tth_____ o

problem is unsolvable in the sense of recursive number theory. However
Oskar Herrmann, A non-trivial solution of the diophantine equation 9(u? + 7v2)% — 7(r® 4 75%)? = 2,
Computers in Number Theory (ed. A.O.L. Atkin & B.J. Birch, Academic Press, 1971, 207-212.
established that (1) had a non-trivial solution and Shanks computed it.

Does (1) have infinitely many solutions?

We may write (1) in the form 942 — 7B2 = 2, where A,, B, are of form z2 + 7y>.
Apnyr = 8A, + 7B, Bpyy = 9A, + 8B, Ay = By = 1. The A,, B, are all odd, and an
odd z is of the form z? 4+ 7Ty? just if p*||z implies that p* = 0, 1, 2, 4mod 7, i.e. primes
p =1, 2, 4 mod 7 may divide to any power, but primes ¢ = 3, 5, 6 mod 7 must divide to an
even power. (A,, B,) = (1,1), (3-5,17), (239,271), (13-293,7-617), ..., where the bad primes g
are shown in bold and we can rule out as far as n = 26. Hermann showed that
Azs = 172314290896 2461416647 0862182959 and B,s = 195386040451 6750611809 7869511631
are prime and lead to a solution. If we continue, A3z = psp1aps =4-1-2mod 7 and
B33 = pgp1aphs = 1-4 -1 mod 7 where p; denotes a prime with j decimal digits. By composition
(e.g., pa = 1607 = 402 + 7 - 12, p;» = 243402458839 = 1792082 + 7 - 1737352 so that p,p;» =
(40-179208 £ 7-1-173735)% + 7(40- 173735 F 1 - 179208)°) these lead to 16 new solutions of (1).
And A35 = PsP3s = 1-1and B35 = p3p5p’5p13p19 =2-2-4-4-1 yield 32 more.
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